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a b s t r a c t 

In vision domain, large-scale natural datasets typically exhibit long-tailed distribution which has large 

class imbalance between head and tail classes. This distribution poses difficulty in learning good rep- 

resentations for tail classes. Recent developments have shown good long-tailed model can be learnt by 

decoupling the training into representation learning and classifier balancing. However, these works pay 

insufficient consideration on the long-tailed effect on representation learning. In this work, we propose 

interpolative centroid contrastive learning (ICCL) to improve long-tailed representation learning. ICCL in- 

terpolates two images from a class-agnostic sampler and a class-aware sampler, and trains the model 

such that the representation of the interpolative image can be used to retrieve the centroids for both 

source classes. We demonstrate the effectiveness of our approach on multiple long-tailed image classifi- 

cation benchmarks. 

© 2023 Elsevier B.V. All rights reserved. 

1

s

t

e

a

w  

c

i

r

t

a

[

t

d

s

l

j

(

t

o

i

t

t

t

l

t

f

S

l

w

f

a

c

d

a

h

0

. Introduction 

In recent years, deep learning algorithms have achieved impres- 

ive results in various computer vision tasks [1–4] . However, long- 

ailed recognition remains as one of the major challenges. Differ- 

nt from most human-curated datasets where object classes have 

 balanced number of samples, the distribution of objects in real- 

orld is a function of Zipf’s law [5] where a large number of tail

lasses have few samples. Thus, models typically suffer a decrease 

n accuracy on the tail classes. Since it is resource-intensive to cu- 

ate more samples for all tail classes, it is imperative to address 

he challenge of long-tailed recognition. 

In the literature of long-tailed recognition, typical approaches 

ddress the class imbalance issue by either data re-sampling 

6–8] or loss re-weighting techniques [9–11] . Re-sampling facili- 

ates the learning of tail classes by shifting the skewed training 

ata distribution towards the tail through undersampling or over- 

ampling. Re-weighting modifies the loss function to encourage 

arger gradient contribution or decision margin of tail classes. 
Abbreviations: ICCL, Interpolative contrastive centroid learning. 
∗ Corresponding author. 

E-mail addresses: anthonym001@e.ntu.edu.sg (A.M.H. Tiong), 

unnan.li@salesforce.com (J. Li), gslin@ntu.edu.sg (G. Lin), boyang.li@ntu.edu.sg 

B. Li), cxiong@salesforce.com (C. Xiong), shoi@salesforce.com (S.C.H. Hoi) . 

c

o

t

f

t

ttps://doi.org/10.1016/j.patrec.2023.03.010 

167-8655/© 2023 Elsevier B.V. All rights reserved. 
However, recent developments [12,13] discover that conven- 

ional re-sampling and re-weighting methods can lead to a sub- 

ptimal long-tailed representation learning. In light of these find- 

ngs, various approaches [12,13] propose to decouple representa- 

ion learning and classifier balancing. BBN [13] demonstrates that 

he performance can be further improved by addressing the long- 

ailed effect during the representation learning. 

In order to correctly classify tail-class samples, it is crucial to 

earn discriminative representations. In this work, we propose in- 

erpolative contrastive centroid learning (ICCL), a new two-stage 

ramework to learn discriminative representations for tail classes. 

pecifically, inspired by Mixup [14] , a data augmentation which 

inearly combines the training data in the input and label space, 

e create virtual training samples by interpolating two images 

rom two samplers: a class-agnostic sampler which returns all im- 

ges with equal probability, and a class-aware sampler which fo- 

uses more on tail-class images. We project images into a low- 

imensional embedding space, and create class centroids as aver- 

ge embeddings. Given the interpolative embedding, we query the 

lass centroids with a contrastive similarity matching, and train 

ur model such that the embedding has higher similarities with 

he correct class centroids. 

The intuition behind our method is to use the head classes to 

acilitate representation learning of the tail classes. For example, 

he head-class golden retriever may help the recognition of the 
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Fig. 1. ICCL framework. The uniform branch (top) focuses more on head-class samples and is trained with the standard cross entropy loss.The interpolative branch (bottom) 

focuses more on tail-class samples and is trained with an interpolative classification loss and an interpolative centroid contrastive loss. The model parameters are shared 

between the two branches. 
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ail-class poodle. Therefore, we adopt Mixup [14] , which has the 

ffect of creating a linearly interpolated feature space. The two 

amplers create an interpolation between a head and a tail. The 

nterpolative sample also increases the tail-class training examples 

nd provides additional supervision to learn tail-class representa- 

ion. However, the model might be confused by the interpolative 

ample with either the head or the tail only. The proposed inter- 

olative centroid contrastive loss encourages the tail centroids to 

e positioned discriminatively relative to the head classes by in- 

ecting class-balanced knowledge in the form of centroids. For the 

ontrastive loss to work well, the head classes must be well po- 

itioned. Therefore, we adopt the regular classification loss (top 

ranch in Figure 1 ) to perform representation learning for head 

lasses. The interpolative classification loss (bottom branch) further 

mproves the head-class alignment. These loss components rein- 

orce one another. 

We summarize our contribution as follows: (a) we introduce 

nterpolative centroid contrastive learning for discriminative long- 

ailed representation learning. ICCL reduces intra-class variance 

nd increases inter-class variance by optimizing the distance be- 

ween sample embeddings and the class centroids; (b) ICCL im- 

roves tail-class representations by addressing class imbalance 

ith class-aware sample interpolation and interpolative centroid 

oss; (c) ICCL achieves improved performance on multiple long- 

ailed recognition benchmarks. We also perform ablation studies 

o verify the effectiveness of each proposed component. 

. Related work 

Re-sampling. Re-sampling aims to address the imbalance is- 

ue from the data level. Two main re-sampling approaches in- 

lude oversampling and undersampling. Oversampling [6,15] in- 

reases the number of tail-class samples at the risk of overfitting 

he model, whereas undersampling might reduce the head classes 

iversity by decreasing their sample numbers [7] . Class-balanced 

ampling assigns equal sampling probability for all classes, and 

hen selects their respective images uniformly [8] . 

Re-weighting. Re-weighting methods modify the loss function 

lgorithmically to encourage larger gradient contribution or deci- 

ion margin of tail classes [9–11] . Cui et al . [9] introduce class-

alanced loss based on the effective class samples, which improves 

pon the approaches that assign class weight inversely propor- 
124 
ional to their sample number [16] . Cao et al . [17] develop label

ependent loss that promotes larger margins for tail class. Menon 

t al . [10] propose logit adjustment to softmax loss by considering 

he pairwise class relative margin. 

Conventional re-sampling and re-weighting could affect the 

uality of the long-tailed representation [12,13] . Our method 

dopts two samplers, a class-agnostic and a class-aware, to create 

nterpolative samples that address the imbalance issue during the 

epresentation learning. 

Decoupled strategy. Several studies decouple the training into 

epresentation learning and classifier balancing [12,13,18] . Kang et 

l . [12] find that the long-tailed distribution has more nega- 

ive impact on the classifier than the representation. They pro- 

ose a two-stage strategy which firstly learns the representation 

n a class-agnostic manner, followed by rebalancing the classifier. 

BN [13] introduces a re-balancing branch which focuses on tail 

lasses and trains it with the conventional uniform branch simulta- 

eously in a single-stage curriculum learning manner. Our method 

s based on the two-stage training approach. We show that long- 

ailed representation learning can be further improved by our pro- 

osed interpolative centroid contrastive learning even before bal- 

ncing the classifier rebalancing. 

Contrastive learning. Recently, contrastive learning approaches 

emonstrate strong performance in self-supervised representation 

earning [19–21] . Contrastive learning encourages the two aug- 

ented embeddings from the same image to have higher similar- 

ty in contrast to others. Several works [22–24] extend contrastive 

earning to long-tailed recognition. KCL [22] constructs the posi- 

ive pairs by selecting the same number of examples for all classes 

n order to learn a balanced representation space. TSC [23] creates 

niformly dispersed targets as anchors to align the feature of dif- 

erent classes. BCL [24] incorporates class semantics into the tar- 

ets by using class prototypes. In contrast, ICCL operates on an 

nterpolative sample consisting information of both classes. Our 

ontrastive loss seeks to learn a representation for the interpola- 

ive sample, such that it can be used to retrieve the centroids for 

oth source classes. The centroid retrieval is performed via non- 

arametric contrastive similarity matching in the low-dimensional 

pace, thus it is different from Mixup [14] which operates on the 

arametric classifier. 

Mixup. By performing convex combination of training samples, 

ixup [14] regularizes the neural network. Chou et al . [25] pro- 
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ose larger mixing weight for tail classes to push the decision 

oundary towards the head classes. Ye et al . [26] balance the 

raining by weakening the head-class learning through mixing 

heir features with others. Several works apply Mixup to im- 

rove contrastive learning representation in self-supervised set- 

ing [27,28] . In contrast, our interpolative centroid contrastive loss 

s a new loss designed for supervised representation learning under 

ong-tailed distribution. 

. Method 

.1. Overall framework 

Our proposed long-tailed representation learning framework 

onsists of a uniform and an interpolative branch as illustrated in 

igure 1 . The uniform branch follows the original long-tailed dis- 

ribution to learn more generalizable representations from data- 

ich head-class samples, whereas the interpolative branch focuses 

ore on modeling the tail-class to improve tail-class representa- 

ion. Both branches share the same model parameters, which is 

ifferent from BBN [13] . Our framework consists of: (a) a CNN en- 

oder which transforms an image into a feature vector g i ∈ R 

d g . 

he feature g i is the output from the global average pooling layer; 

b) a MLP projection head [19] which transforms the feature vec- 

or g i into a low-dimensional normalized embedding z i ∈ R 

d z ; (c) 

 linear classifier which returns a class probability p i given a fea- 

ure vector g i ; (d) class centroids c k ∈ R 

d z ×K which resides in the 

ow-dimensional embedding space. Similar to MoPro [29] , we com- 

ute the centroid of each class as the exponential-moving-average 

EMA) of the low-dimensional embeddings for samples from that 

lass. Specifically, the centroid for class k is updated during train- 

ng by: 

 

k ← m · c k + (1 − m ) 
K ∑ 

k =1 

1 y i = k · z i , (1) 

here m is the momentum coefficient; (e) a class-agnostic and a 

lass-aware sampler which create interpolative samples. 

.2. Interpolative sample generation 

We utilize two different samplers for interpolative sample gen- 

ration: (a) a class-agnostic sampler which selects all samples 

ith an equal probability regardless of the class, thus it re- 

urns more head-class samples. We denote a sample returned by 

he class-agnostic sampler as ( x h 
i 
, y h 

i 
) ; (b) a class-aware sampler 

hich focuses more on tail classes. It first samples a class and then 

elect the corresponding samples uniformly with repetition. Let n k 

enotes the number of samples in class k , the probability p(k ) of

ampling class k is inversely proportional to n k as follows: 

p(k ) = 

( 1 /n 

k ) γ
∑ K 

j=1 ( 1 /n 

j ) γ
, (2) 

here γ is an adjustment parameter. When γ = 0 , the class-aware 

ampler is equivalent to the balanced sampler in [8] . When γ = 1 ,

t is the reverse sampler in [13] . We denote a sample returned by

he class-aware sampler as ( x t 
i 
, y t 

i 
) . 

An interpolative image x 
f 
i 

is formed by linearly combining two 

mages from the class-agnostic and class-aware sampler, respec- 

ively. 

 

f 
i 

= λx h i + (1 − λ) x t i , (3) 

here λ ∼ U(0 , 1) is sampled from a uniform distribution. It is 

quivalent to the Beta (α, α) used in Mixup [14] with α = 1 . Our

ontrastive learning trains the model such that the representation 

f the interpolative image is discriminative for both class y h 
i 

and 

lass y t 
i 
. 
125 
.3. Interpolative centroid contrastive loss 

Here we introduce the proposed interpolative centroid con- 

rastive loss which aims to improve long-tailed representation 

earning. Given the low-dimensional embedding z 
f 
i 

for an inter- 

olative sample x 
f 
i 

, we use z 
f 
i 

to query the class centroids with 

ontrastive similarity matching. Specifically, the probability that 

he k -th class centroid c k is retrieved is given as: 

p( c k | x f 
i 
) = 

exp ( z f 
i 

· c k /τ ) 
∑ K 

j=1 exp ( z f 
i 

· c j /τ ) 
, (4) 

here τ is a scalar temperature parameter to scale the similarity. 

quation 4 can be interpreted as a non-parametric classifier. Since 

he centroid is computed as the moving-average of z i , it does not 

uffer from the problem of weight imbalance as a parametric clas- 

ifier does. 

Since x 
f 
i 

is a linear interpolation of x h 
i 

and x t 
i 

(see Equation 3 ), 

ur loss encourages the retrieval of the corresponding centroids of 

lass y h 
i 

and y t 
i 
. Thus, the interpolative centroid contrastive loss is 

efined as: 

 

it 
cc = −λ log (p( c y 

h 
i | x f 

i 
)) − (1 − λ) log (p( c y 

t 
i | x f 

i 
)) . (5) 

The proposed centroid contrastive loss introduces valuable 

tructural information into the embedding space. The numerator 

f p( c | x f 
i 
) reduces the intra-class variance by pulling embeddings 

ith the same class closer to the class centroid. The denominator 

f p( c | x f 
i 
) increases the inter-class variance by pushing an embed- 

ing away from other classes’ centroids. Therefore, more discrimi- 

ative representations can be learned. 

.4. Overall loss 

Given the classifier’s output prediction probability p ( x h 
i 
) for an 

mage x h 
i 
, we define the classification loss on the uniform branch 

s the standard cross entropy loss: 

 ce = − log (p y 
h 
i ( x h i )) . (6) 

For an interpolative sample x 
f 
i 

, the classification loss is 

 

it 
ce = −λ log (p 

y h 
i 

i 
( x f 

i 
)) − (1 − λ) log (p 

y t 
i 

i 
( x f 

i 
)) . (7) 

During training, we jointly minimize the sum of losses on both 

ranches: 

 total = 

n ∑ 

i =1 

ω u L ce + ω it (L 

it 
ce + L 

it 
cc ) , (8) 

here ω u and ω it are the weights for the uniform branch and the 

nterpolative branch, respectively. 

.5. Classifier rebalancing 

We rebalance our classifier after the representation learning 

tage. Specifically, we discard the projection head and fine-tune the 

inear classifier. The CNN encoder is either fixed or fine-tuned with 

 smaller learning rate. In order to rebalance the classifier towards 

ail classes, we employ our class-aware sampler. We denote the 

ampler’s adjustment parameter as γ ′ . Due to more frequent sam- 

ling of tail-class samples, the classifier’s logits distribution would 

hift towards the tail classes at the cost of lower accuracy on head 

lasses. To control the trade-off between the head and tail, we in- 

roduce a distillation loss [36] using the classifier from the first 

tage as the teacher. The overall loss for classifier rebalancing con- 

ists of a cross-entropy classification loss and a KL-divergence dis- 

illation loss. 

 cb = 

n ∑ 

i =1 

(1 − ω d ) L ce + ω d τ
2 
d L KL 

(
σ ( o 

T /τd ) , σ ( o 

S /τd ) 
)
, (9) 
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Table 1 

Top-1 accuracy on CIFAR100-LT and CIFAR10-LT using ResNet-32 CIFAR. Here, ∗ de- 

notes results from [13] . ∗∗ denotes results from [23] . † denotes our reproduced 

results based on [12] setting. ‡ denotes models trained longer (400 epochs) with 

stronger augmentation (Cutout and AutoAugment) than the others. 

Dataset CIFAR100-LT CIFAR10-LT 

Imbalance ratio 100 50 10 100 50 10 

CE ∗ 38.3 43.9 55.7 70.4 74.8 86.4 

Focal Loss ∗ [30] 38.4 44.3 55.8 70.4 76.7 86.7 

Mixup ∗ [14] 39.5 45.0 58.0 73.1 77.8 87.1 

Manifold Mixup ∗ [31] 38.3 43.1 56.6 73.0 78.0 87.0 

CB-Focal ∗ [9] 39.6 45.2 58.0 74.6 79.3 87.1 

CE-DRW 

∗ [17] 41.5 45.3 58.1 76.3 80.0 87.6 

CE-DRS ∗ [17] 41.6 45.5 58.1 75.6 79.8 87.4 

LDAM-DRW 

∗ [17] 42.0 46.6 58.7 77.0 81.0 88.2 

cRT † [12] 42.3 46.8 58.1 75.7 80.4 88.3 

LWS † [12] 42.3 46.4 58.1 73.0 78.5 87.7 

BBN [13] 42.6 47.0 59.1 79.8 82.2 88.3 

KCL ∗∗ [22] 42.8 46.3 57.6 77.6 81.7 88.0 

M2m [32] 43.5 - 57.6 79.1 - 87.5 

TSC [23] 43.8 47.4 59.0 79.7 82.9 88.7 

Logit adjustment [10] 43.9 - - 77.7 - - 

De-confound-TDE [33] 44.1 50.3 59.6 80.6 83.6 88.5 

ResLT [34] 45.3 50.0 60.8 80.4 83.5 89.1 

PaCo ‡ [35] 52.0 56.0 64.2 - - - 

ICCL (ours) 46.6 51.6 62.1 82.1 84.7 89.7 
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here ω d is the weight of the distillation loss, o S and o T are the 

lass logits produced by the student classifier (2nd stage) and the 

eacher classifier (1st stage), respectively. τd is the distillation tem- 

erature and σ is the softmax function. 

For inference, we use a classification network consisting of the 

NN encoder followed by the rebalanced classifier. 

. Experiments 

.1. Dataset and evaluation 

We evaluate our method on three standard benchmark datasets 

or long-tail recognition as follows: 

CIFAR-LT. CIFAR10-LT and CIFAR100-LT contain samples from 

he CIFAR10 and CIFAR100 [39] dataset, respectively. The class 

ampling frequency follows an exponential distribution. Follow- 

ng [13,17] , we construct LT datasets with different imbalance ra- 

ios of 100, 50, and 10. Imbalance ratio is defined as the ratio 

f the maximum to the minimum class sampling frequency. The 

umber of training images for CIFAR10-LT with an imbalance ra- 

io of 100, 50 and 10 is 12k, 14k and 20k, respectively. Similarly, 

IFAR100-LT has a training set size of 11k, 13k and 20k. Both test 

ets are balanced with the original size of 10k. 

ImageNet-LT. The training set consists of 10 0 0 classes with 

16k images sampled from the ImageNet [1] dataset. Follow- 

ng [37] , the class sampling frequency bases on a Pareto distribu- 

ion with a shape parameter of 6. The imbalance ratio is 256. The 

alidation set consists of 20k images. The test set is ImageNet orig- 

nal test set with a size of 50k. 

iNaturalist 2018. It is a real-world long-tailed dataset for fine- 

rained image classification of 8,142 species [40] . We utilize the 

fficial training and test datasets composing of 438k training and 

4k test images. 

For all datasets, we evaluate our models on the test sets and 

eport the overall top-1 accuracy across all classes. For CIFAR-LT 

hich is a relatively small dataset, we average the accuracy over 

 trials. For ImageNet-LT and iNaturalist 2018, we perform a sin- 

le run. To further access the model’s accuracy on different classes, 

e group the classes into splits according to their number of im- 

ges [12,37] : many ( > 100 images), medium ( 20 − 100 images) and

ew ( < 20 images) for ImageNet-LT and iNaturalist 2018. 

.2. Implementation details 

For fair comparison, we follow the same training setup of pre- 

ious works using SGD optimizer with a momentum of 0.9. For all 

xperiments, we fix class centroid momentum coefficient m = 0 . 99 , 

lass-aware sampler adjustment parameter γ = 0 , γ ′ = 1 , distil- 

ation weight ω d = 0 . 5 and distillation temperature τd = 10 . Un-

ess otherwise specified, for the hyperparameters, we set branch 

eights ω u = 1 , ω it = 1 , temperature τ = 0 . 07 and projected em-

edding size d z = 128 in the representation learning stage. m , τ
nd d z are based on typical values suggested in the contrastive 

earning literature [19,20] . These hyperparameters are the same for 

mageNet-LT and iNaturalist 2018, but τ and d z are different for 

IFAR-LT due to smaller network architecture and image size. In 

he classifier balancing stage, we freeze the CNN and fine-tune the 

lassifier using the original learning rate ×0 . 1 with cosine decay for 

0 epochs. 

We also design a warm-up training curriculum. Specifically, 

n the first T epochs, we train only the uniform branch using 

he cross-entropy loss L ce and a (non-interpolative) centroid con- 

rastive loss L cc = − log (p( c y 
h 
i | x h 

i 
)) . After T epochs, we activate the

nterpolative branch and optimize L total in Equation 8 . The warm- 

p provides good initialization for the representations and the cen- 
126 
roids. T is scheduled to be approximately halfway through the to- 

al number of epochs. 

CIFAR-LT. We use a ResNet-32 [41] and follow the training 

trategies in [13] . We train the model for 200 epochs, 32 × 32 

mage resolution, 128 batch size and 2e −4 weight decay. We use 

tandard data augmentation which consists of random horizon- 

al flip and cropping with a padding size of 4. The learning rate 

ncreases to 0.1 within the first 5 epochs and decays at epoch 

20 and 160 with a step size of 0.01. We set τ = 0 . 3 and T = 80

nd 100 for CIFAR100-LT and CIFAR10-LT, respectively. ω u is set 

s 0 after warm-up. d z is 32. In the classifier balancing stage, we 

ne-tune the CNN encoder using cosine scheduling with an initial 

earning rate of 0.01. 

ImageNet-LT. We train a ResNeXt-50 [42] model for 90 epochs, 

24 × 224 image resolution, 256 batch size, 5e −4 weight decay 

nd 0.1 learning rate with cosine decay. Similar to [12] , we aug- 

ent the data using random horizontal flip, cropping and color jit- 

ering. We set T = 40 . 

iNaturalist 2018. Following the training strategies in [12] , we 

rain a ResNet-50 model for 90 epochs and 200 epochs using 

.2learning rate with cosine decay, 224 × 224 image resolution, 

12 batch size and 1e −4 weight decay. The data augmentation 

omprises of only horizontal flip and cropping. T is set as 40 and 

00 epochs for training epochs of 90 and 200, respectively. 

.3. Results 

In this section, we present the results.The proposed ICCL 

chieves improved performance on all benchmarks across baseline 

ethods except PaCo [35] . It is worth noting that PaCo utilizes 

tronger augmentation (RandAugment, Cutout and AutoAugment) 

nd longer training (400 epochs) compared with ICCL and other 

ethods. 

CIFAR-LT. Table 1 demonstrates that ICCL surpasses existing 

ethods across different imbalance ratios for both CIFAR100-LT 

nd CIFAR10-LT. The performance of ICCL outperforms ResLT by 

.3% on the more challenging CIFAR100-LT with an imbalance ra- 

io of 100. 

ImageNet-LT. Table 2 presents the ImageNet-LT results, where 

CCL outperforms the existing methods. For ImageNet-LT, we also 

ropose an improved set of hyperparameters which increases the 
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Table 2 

Top-1 accuracy on ImageNet-LT using ResNeXt-50. ∗ denotes results from [33] . † denotes our reproduced 

results using improved settings. ‡ denotes models trained longer (400 epochs) with stronger augmentation 

(RandAugment) than the others. The trade-off between head class (i.e. many) and tail class (i.e. medium 

and few) accuracy is adjustable without affecting the overall accuracy (see Fig. 4 ). 

Method Overall Many Medium Few 

OLTR ∗ [37] 41.9 51.0 40.8 20.8 

Focal Loss ∗ [30] 43.7 64.3 37.1 8.2 

NCM [12] 47.3 56.6 45.3 28.1 

τ -norm [12] 49.4 59.1 46.9 30.7 

cRT [12] 49.6 61.8 46.2 27.4 

LWS [12] 49.9 60.2 47.2 30.3 

De-confound-TDE [33] 51.8 62.7 48.8 31.6 

ResLT [34] 52.9 63.0 50.5 35.5 

DisAlign [38] 53.4 62.7 52.1 31.4 

PaCo ‡ [35] 58.2 67.5 56.9 36.7 

cRT † [12] 52.4 64.3 49.1 30.7 

LWS † [12] 52.5 63.0 49.6 32.8 

De-confound-TDE † [33] 52.4 63.5 49.2 32.2 

ICCL (ours) 54.0 60.7 52.9 39.0 

Table 3 

Top-1 accuracy on iNaturalist 2018 using ResNet-50 for 90 epochs and 200 epochs. ∗ denotes results 

from [13] which uses 90 and 180 epochs. ‡ denotes models trained for 400 epochs. The trade-off between 

head class (i.e. many) and tail class (i.e. medium and few) is adjustable without affecting the overall accu- 

racy (see Fig. 4 ). 

Method 90 Epochs 200 Epochs 

Overall Many Medium Few Overall Many Medium Few 

CB-Focal [9] 61.1 - - - - - - - 

CE-DRS ∗ [17] 63.6 - - - - - - - 

CE-DRW 

∗ [17] 63.7 - - - - - - - 

LDAM-DRW [17] 68.0 - - - - - - - 

LDAM-DRW 

∗ [17] 64.6 - - - 66.1 - - - 

NCM [12] 58.2 55.5 57.9 59.3 63.1 61.0 63.5 63.3 

cRT [12] 65.2 69.0 66.0 63.2 68.2 73.2 68.8 66.1 

τ -norm [12] 65.6 65.6 65.3 65.9 69.3 71.1 68.9 69.3 

LWS [12] 65.9 65.0 66.3 65.5 69.5 71.0 69.8 68.8 

Logit adjustment [10] 66.4 - - - - - - - 

BBN [13] 66.4 49.4 70.8 65.3 69.7 61.7 73.6 66.9 

KCL [22] 68.6 - - - - - - - 

DisAlign [38] 69.5 61.6 70.8 69.9 70.2 68.0 71.3 69.4 

TSC [23] 69.7 72.6 70.6 67.8 - - - - 

ResLT [34] - - - - 70.2 68.5 69.9 70.4 

PaCo ‡ [35] - - - - 73.0 69.5 73.4 73.0 

ICCL (ours) 70.5 67.6 70.2 71.6 72.5 72.1 72.3 72.9 
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Table 4 

Ablation study on different components of ICCL on ImageNet-LT. Head denotes the 

many split, whereas tail includes the medium and few splits. The proposed L it ce , L it cc , 

and warm-up all contribute to accuracy improvement. Using only L it ce is equivalent 

to Mixup [14] . 

L ce L it ce L it cc Warm-up Overall Head Tail 

� 51.3 60.6 45.5 

� 51.6 58.3 47.4 

� � 51.7 57.9 47.9 

� � � 52.4 59.9 47.7 

� � � 53.4 61.1 48.6 

� � � 53.6 61.2 48.8 

� � � � 54.0 60.7 49.8 

p

p

d

o

L
s

u

a

o

u

ccuracy for existing methods. Specifically, different from the orig- 

nal hyperparameters used in [12] , we use a smaller batch size 

f 256 and a learning rate of 0.1. Furthermore, we find it is bet- 

er to use original learning rate ×0 . 1 for classifier balancing. For 

air comparison, we re-implement Decouple methods [12] and De- 

onfound-TDE [33] using our settings and obtain better accuracy 

han those reported in the original papers. However, ICCL still 

chieves the best overall accuracy of 54.0% with noticeable accu- 

acy gains on medium and few classes. 

iNaturalist 2018. On the real-world large-scale iNaturalist 2018 

ataset, ICCL achieves good improvements compared with existing 

ethods as shown in Table 3 . For 90 and 200 epochs, our method

chieves the best overall accuracy of 70.5% and 72.5% respectively. 

.4. Ablation study 

Here we perform extensive ablation study to examine the ef- 

ect of each component and hyperparameters of ICCL, and provide 

nalysis on what makes ICCL successful. 

Loss components. For representation learning, ICCL introduces 

he interpolative centroid contrastive loss L 

it 
cc and the interpolative 

ross-entropy loss L 

it 
ce as shown in Equation 8 . In Table 4 , we eval-

ate the contribution of each loss components on the ImageNet-LT 

ataset. We consider many split as the head classes ( > 100 images 
127 
er class), medium and few splits as the tail classes ( ≤ 100 images 

er class). We employ the same classifier balancing technique as 

escribed in Section 3.4. We observe that L 

it 
ce and L 

it 
cc improve the 

verall accuracy individually and collectively. By comparing with 

 

it 
ce only, which is equivalent to Mixup [14] , we demonstrate the 

uperiority of our loss formulation. Additionally, having a warm- 

p stage before incorporating interpolative losses provides an extra 

ccuracy boost, especially for the tail classes. This aligns with the 

bservation in [17] which suggests that adopting a deferred sched- 

le before re-sampling is better for representation learning. 
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Table 5 

Effect of sampling λ from different Beta (α, β) distribution 

(see right figure) on CIFAR100-LT. λ determines the weight- 

ing of the two samples for a given interpolative sample. 

Beta (α, β) CIFAR100-LT 

(0.2, 1.0) 43.6 

(0.2, 0.2) 43.8 

(0.6,0.6) 45.4 

(1.0,1.0) 46.6 

(2.0, 2.0) 46.8 

Table 6 

Adjustment parameter γ of the interpolative branch class-aware sampler. Focus ex- 

cessively on head-class (uniform) or tail-class samples ( γ = 1 ) leads to worse per- 

formance. 

Sampler CIFAR100-LT CIFAR10-LT ImageNet-LT iNaturalist 

Uniform 44.7 79.9 52.8 69.4 

γ = 0 46.6 82.1 54.0 70.5 

γ = 0 . 5 46.2 81.6 54.1 70.2 

γ = 1 . 0 46.2 81.1 53.1 70.1 

p

e
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r

s  

r
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Table 7 

Effect of classifier rebalancing on ImageNet-LT. ICCL learns better tail-class repre- 

sentation which leads to higher tail-class (i.e. medium and few) accuracy after clas- 

sifier rebalancing. 

Method Rebalancing Overall Many Medium Few 

CE [12] - 46.7 68.1 40.2 9.0 

Mixup [14] - 49.5 64.1 44.8 24.4 

ICCL (ours) - 50.5 68.5 44.4 20.8 

CE [12] � 52.4 64.3 49.1 30.7 

Mixup [14] � 51.6 58.3 50.5 36.5 

ICCL (ours) � 54.0 60.7 52.9 39.0 

Table 8 

Ablation study for classifier rebalancing parameters. ICCL benefits from using a 

reverse sampler ( γ ′ = 1 ) and knowledge distillation ( ω d = 0 . 5 ), especially for the 

more complex ImageNet-LT and iNaturalist datasets. 

γ ′ ω d CIFAR100-LT CIFAR10-LT iNaturalist ImageNet-LT 

ICCL ICCL ICCL ICCL cRT 

0 0 45.3 77.5 69.5 53.7 52.4 

0 0.5 45.0 77.6 69.5 53.2 52.2 

1 0 47.1 82.3 70.2 53.6 49.6 

1 0.5 46.6 82.1 70.5 54.0 51.3 

a
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Interpolation weight λ. In Equation 3 , we sample the inter- 

olation weight λ ∈ [0 , 1] from a uniform distribution, which is 

quivalent to Beta (1 , 1) . We vary the beta distribution and study 

ts effect on CIFAR100-LT with an imbalance ratio of 100. The 

esulting accuracy and the corresponding beta distribution are 

hown in Table 5 . Sampling from Beta (0 . 2 , 1 . 0) is more likely to

eturn a small λ, thus the interpolative samples contain more 

nformation about images from the class-aware sampler. As we 

x α = β and increase them from 0.2 to 2, the accuracy in- 

reases. Good performance can be achieved with Beta (1 . 0 , 1 . 0) and

eta (2 . 0 , 2 . 0) , where the sampled λ is less likely to be an extreme

alue. 

Class-aware sampler adjustment parameter γ . We further in- 

estigate the influence of γ on representation learning. When γ = 

 and 1, the class-aware sampler is equivalent to class-balanced 

ampler [8] and reverse sampler [13] respectively. We include a 

lass-agnostic uniform sampler as the baseline. Table 6 shows that 

he interpolative branch sampler should neither focus excessively 

n the tail classes ( γ = 1 ) nor on the head classes (uniform). When

sing either of these two samplers, the resulting interpolative im- 
ig. 2. Visualization of classifer’s weight norm and centroid’s norm of ICCL after the re

omparing with cRT [12] , the weight norm of our ICCL classifier is more balanced. Additi

128 
ge might be less informative due to excessive repetition of tail- 

lass samples or redundant head-class samples. 

Rebalancing classifier. In Table 7 , we show the effect of 

lassifier rebalancing, which improves the ICCL, CE [12] and 

ixup [14] methods. By learning better tail-class repre- 

entation, ICCL achieves higher overall accuracy compared 

o [12] and [14] both before and after classifier rebalancing. 

Classifier rebalancing parameters. In the classifier rebalancing 

tage, we fix the sampler adjustment parameter γ ′ = 1 , and the 

istillation weight ω d = 0 . 5 . We study their effects in Table 8 . For

he ICCL approach, using a reverse sampler ( γ ′ = 1 ) is better than

 balanced sampler ( γ ′ = 0 ). Further, the distillation loss tends to 

enefit more complex ImageNet-LT and iNaturalist than CIFAR-LT 

atasets. For the baseline cRT [12] , applying the reverse sampler 

nd distillation does not give accuracy improvement compared to 

he default setting (52.4). 

Alternative rebalancing methods. In Table 9 , we compare dif- 

erent rebalancing approaches for ICCL. Across all datasets, ICCL 

lassifier rebalancing achieves better performance than naive class- 

alanced sampling [12] and post-hoc logit adjustment [10] . 

Weight norm visualization. The L 2 norms of the weights for 

he linear classification layer suggest how balanced the classifier is. 

 high weight norm for a particular class indicates that the classi- 

er has a high preference for that class. Figure 2 depicts the weight 

orm of ICCL and cRT [12] after the representation learning and 

lassifier balancing stage. In both stages, the weight norms of the 

CCL classifier are more balanced than cRT. Furthermore, we plot 
presentation learning (left) and classifier balancing stage (right) on ImageNet-LT. 

onally, the class centroids have intrinsically balanced norm. 
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Table 9 

Comparison between ICCL classifier rebalancing with naive class-balanced sampling and 

post-hoc logit adjustment. ICCL classifier rebalancing is better than the alternatives. 

Method CIFAR100-LT CIFAR10-LT iNaturalist ImageNet-LT 

Balanced sampling [12] 45.3 77.5 69.5 53.7 

Logit adjustment [10] 43.4 76.2 69.7 53.7 

ICCL (ours) 46.6 82.1 70.5 54.0 

Fig. 3. Visualization of ICCL projected embeddings on CIFAR10-LT with an imbalance ratio of 100, 50 and 10. ∗ denotes the class centroids. ICCL learns a representation that 

forms compact clusters. 

Fig. 4. Effect of distillation temperature τd on ImageNet-LT. ICCL’s overall accuracy 

is not sensitive to τd variation. 
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he norms of our class centroids c k , which shows that the centroids 

re intrinsically balanced across different classes. 

Embedding visualization. In Figure 3 , we visualize the pro- 

ected embeddings trained using ICCL on CIFAR10-LT with an im- 

alance ratio of 100, 50 and 10 using t-SNE. The class centroids fa- 

ilitate the learning of a compact representation that is beneficial 

or good classification. 

Distillation loss. In Table 10 , we study the effectiveness of dis- 

illation loss in controlling the trade-off between different class 

plits during the classifier rebalancing stage. For ImageNet-LT and 

Naturalist, the distillation loss improves the many class accuracy 

nd achieves better overall accuracy. 

Distillation temperature τd . In Figure 4 , we study how τd af- 

ects the accuracy of ICCL on ImageNet-LT. We find that the over- 

ll accuracy is not sensitive to changes in τd . As τd increases, the 

eacher’s logit distribution becomes more flattened. Therefore, the 

ccuracy for medium and few class improves, whereas the accu- 

acy for many class decreases. 
able 10 

ffect of distillation loss on class split accuracy on ImageNet-LT and iNaturalist 

018. Distillation loss improves the many class accuracy and achieves better overall 

ccuracy. 

Dataset Distillation loss Overall Many Medium Few 

ImageNet-LT - 53.6 57.5 53.5 43.1 

� 54.0 60.7 52.9 39.0 

iNaturalist - 70.2 57.5 70.7 72.9 

� 70.5 67.6 70.2 71.6 

S

g

s

l

i

a
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. Conclusion 

In this work, we propose an interpolative centroid contrastive 

earning technique for long-tailed representation learning. By uti- 

izing class centroids and interpolative losses, we strengthen the 

iscriminative power of the learned representations, leading to im- 

roved classification accuracy. We demonstrate the effectiveness 

f our approach with improvements on multiple long-tailed clas- 

ification benchmarks. Specifically, on the real-world large-scale 

Naturalist 2018, ICCL achieves good improvement over competing 

orks. Through extensive ablation studies, we verify and provide 

nsights into the design choices of our framework. For ICCL and 

xisting methods, we observe that an increase in tail-class accu- 

acy often leads to an undesirable drop in head-class accuracy. For 

uture works, we aim to develop methods that can simultaneously 

mprove all classes. 
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