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A Visual Annotation-Free Method That Rivals Fully Supervised

Methods for Grounded Multimodal Named Entity Recognition
Jia Yang, Jianfei Yu, Zilin Du, Wenya Wang, Li Yang, Rui Xia, Boyang Li

Abstract—Grounded Multimodal Named Entity Recognition
(GMNER) aims to extract named entities, their types, and
corresponding visual objects from image-text pairs. However,
existing GMNER methods rely on costly multimodal annotations,
limiting their scalability in real applications. To address this issue,
we propose a visual annotation-free framework that leverages
text-only NER data and a Zero-shot Entity Visual Ground-
ing (ZeroEVG) approach. ZeroEVG consists of three modules:
(1) Candidate Object Generation, which pre-selects visual ob-
ject candidates; (2) Entity-Object Matching, which determines
whether an entity has a visual presence; and (3) Entity Visual
Localization, which employs a variant of GradCAM to identify
bounding boxes for groundable entities. Experimental results
on two benchmark datasets show that our visual annotation-
free framework achieves competitive performance with fully
supervised multimodal approaches, and even surpasses some of
them under the same backbone on both GMNER and EVG tasks.

Index Terms—Multimodal Named Entity Recognition, Entity
Visual Grounding, Pretrained Vision-Language Models

I. INTRODUCTION

As an emerging task in multimodal information extrac-
tion, Grounded Multimodal Named Entity Recognition (GM-
NER) requires jointly extracting named entities, their asso-
ciated types, and corresponding visual objects from image-
text pairs [1]. For instance, given the image-text pair in
Fig. 1(a), the goal of GMNER is to extract five entity-type-
object triplets, i.e., US-Location-None, Ted Cruz-Person-Box-
1, Heidi Cruz-Person-Box-2, Donald Trump-Person-None, and
Republican-Organization-None. Since these extracted entity-
object pairs are crucial for many applications such as multi-
modal knowledge graph construction [2], [3] and knowledge-
intensive VQA [4], [5], GMNER has recently attracted con-
siderable attention [6]–[9].

With the recent advancements in pre-trained models and
Large Language Models (LLMs), many supervised deep learn-
ing approaches have been proposed for GMNER, achiev-
ing promising results on benchmark datasets. These include
sequence labeling-based methods [8], pointer or paragraph
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generation methods [1], [10], and LLM-based methods [6].
Despite their success, these methods rely heavily on large-
scale labeled training data, making them difficult to scale to
new domains.

A major challenge in GMNER is the need for fine-grained
multimodal annotation, which involves both textual and vi-
sual supervision. While text annotation for named entities is
relatively accessible due to the abundance of NER datasets
across various domains, annotating images for GMNER is
significantly more challenging. Grounding named entities to
their corresponding visual objects demands extensive prior
visual knowledge and meticulous inspection of all visual
elements within an image. For instance, as illustrated in
Fig. 1(a), accurately annotating the entity Ted Cruz involves
two key steps: (1) identifying all potential visual objects in
the image and determining whether any correspond to the
entity type of Ted Cruz (i.e., Person), and (2) recognizing
Ted Cruz based on prior knowledge of his appearance to
correctly assign the bounding box. This intricate process is
both labor-intensive and costly, limiting the scalability of
existing supervised methods.

To alleviate the costly image annotation, in this paper, we
explore a new visual annotation-free paradigm for GMNER,
which leverages text-only NER data and zero-shot entity
visual grounding to extract the entity-type-object triplets, as
illustrated in Fig. 1. Since many pre-trained vision-language
models (VLMs) such as CLIP [11] and object detectors like
VinVL [12] have demonstrated strong performance in image-
text matching [13] and open-vocabulary object detection [14],
several recent studies have explored their application for zero-
shot visual grounding [15], [16]. However, applying these
models to entity visual grounding in GMNER presents two
unique challenges: (1) Not all named entities in GMNER
have corresponding visual objects in the image, whereas visual
grounding assumes that every text query is visually present.
(2) The textual queries in GMNER are named entities, which
are often domain-specific and highly personalized, rather than
simple and generic phrases used in visual grounding.

To address these challenges, we propose a novel visual
annotation-free framework for the GMNER task, comprising
a base NER model and a Zero-shot Entity Visual Ground-
ing (ZeroEVG) approach. First, we utilize an NER model
trained solely on text-only datasets to extract named entities.
Then, ZeroEVG predicts whether each entity has a visual
presence and, if so, locates its corresponding visual object.
ZeroEVG consists of three key modules: (1) Candidate Ob-
ject Generation, which employs a category filtering strategy
to pre-select candidate visual objects that match predefined
entity categories, avoiding an exhaustive search on the entire



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

(b) Our Visual Annotation-free Paradigm

Image 
Encoder

GMNER 
Model

ZeroEVG
NER 

Model

US (LOC)
Ted Cruz (PER)
Heidi Cruz (PER)
Donald Trump (PER)
Republican (ORG)

US presidential runner Ted Cruz ends campaign 
with Heidi Cruz , setting Donald Trump on path 
to Republican nomination.

US presidential runner Ted 
Cruz ends campaign with 
Heidi Cruz , setting Donald 
Trump on path to 
Republican nomination.

Supervision

US - LOC - None
Ted Cruz - PER - Box-1
Heidi Curz - PER - Box-2
Donald Trump - PER - None
Republican - ORG - None

Visual Features(a) Fully-supervised Paradigm

𝑁𝑜𝑛𝑒

𝑁𝑜𝑛𝑒

𝑁𝑜𝑛𝑒

US (LOC)

Ted Cruz (PER)

Heidi Cruz (PER)

Donald Trump (PER) 

Republican (ORG)

𝑁𝑜𝑛𝑒

𝑁𝑜𝑛𝑒

𝑁𝑜𝑛𝑒

US (LOC)

Ted Cruz (PER)

Heidi Cruz (PER)

Donald Trump (PER) 

Republican (ORG)

Box-1

Box-2

Fig. 1. A comparison between the previous fully-supervised paradigm and our visual annotation-free paradigm for the GMNER task. None indicates that the
entity has no corresponding visual grounding boxes in the image.

image; (2) Entity-Object Matching, which computes fine-
grained semantic similarity scores between detected entities
and candidate objects to determine visual presence of each
entity; and (3) Entity Visual Localization, which applies a
variant of GradCAM [17] over cross-attention maps in VLMs
to identify the most semantically relevant image regions for
each groundable entity. These regions are then integrated with
entity-object matching scores to predict the final bounding
boxes.

The main contributions of this work are summarized as
follows:

• We introduce a new visual annotation-free paradigm for
GMNER, eliminating the need for costly image anno-
tations by leveraging text-only NER data and zero-shot
entity visual grounding.

• We propose Zero-Shot Entity Visual Grounding (Ze-
roEVG), a method that harnesses pre-trained VLMs and
object detectors to perform entity-object matching and
entity localization without any visual supervision.

• Our framework achieves strong and competitive perfor-
mance compared with fully supervised multimodal meth-
ods across various NER models with the same backbone
on two benchmark GMNER datasets, and even outper-
forms several of them, highlighting the potential of visual
annotation-free methods for scalable and domain-agnostic
GMNER applications.

II. RELATED WORK

A. Multimodal Named Entity Recognition

Traditional information extraction studies have primarily
focused on Named Entity Recognition (NER) [18]–[22], which
identifies recognizing named entities in text and classifying
them into predefined categories. Multimodal Named Entity
Recognition (MNER) extends this task by incorporating im-
age information to enhance recognition accuracy. Early stud-

ies [23]–[25] explored visual feature fusion to enhance textual
representation learning. With the emergence of multimodal
transformers, various attention-based mechanisms [26]–[33]
have been designed to model cross-modal interactions for im-
proved entity recognition. Moreover, image-to-text conversion
techniques [34] and external knowledge retrieval methods [35],
[36] have been proposed to augment textual information
with visual and external knowledge. Beyond traditional se-
quence labeling-based approaches, recent works have intro-
duced machine reading comprehension-based [37], [38], in-
context learning-based [39], [40], generation-based [1], [10],
and information bottleneck-based [41] methods for MNER.

B. Grounded Multimodal Named Entity Recognition

Grounded Multimodal Named Entity Recognition (GM-
NER) extends the MNER task by not only recognizing named
entities and their categories but also grounding them to
corresponding visual objects via bounding box annotations.
Existing approaches primarily follow an end-to-end paradigm,
where GMNER is formulated as sequence labeling tasks [8],
multimodal index or paraphrase generation tasks [1], [10], or
set prediction tasks [9]. Some recent LLM-based methods at-
tempted to decompose the task into MNER, visual entailment,
and visual grounding modules, and use pre-trained LLMs
and visual grounding models to solve them in a pipeline
mannner [6]. In addition, Wang et al. [42] proposed GEM,
which combines multi-granularity entity recognition, MLLM-
based reranking, and LVLM-based implicit grounding to im-
prove fine-grained MNERG.

Despite their effectiveness, these existing GMNER meth-
ods rely heavily on large-scale annotated datasets, requiring
fine-grained annotations of named entities, their types, and
corresponding bounding boxes. To alleviate the costly image
annotation, in this paper, we aim to explore a new visual
annotation-free method for GMNER.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

Image 
Encoder

③ Entity Visual Localization Module

Text
Encoder

Image 
Encoder

Category

Filter

Donald Trump RepublicanUS

𝑁𝑜𝑛𝑒

Ted Cruz 

② Entity-Object Matching Module

Ted Cruz 
(PER)

anchor point: Top K attention pixels with 
the largest connected component

Object 
Detector

① Candidate Object Generation Module

Threshold

PER:

ORG:

LOC: 𝑁𝑜𝑛𝑒

Box Refinement via Weighted Scorer

Matching

Score

Heidi Cruz
(ORG)

US (LOC)
Ted Cruz (PER)
Heidi Cruz (PER)
Donald Trump (PER) 
Republican (ORG)

Input Image and Entities

Entity Visual Grounding Output

Heidi Cruz 

US (LOC)

Ted Cruz (PER)

Heidi Cruz (PER)

Donald Trump (PER) 

Republican (ORG)

𝑁𝑜𝑛𝑒

𝑁𝑜𝑛𝑒

𝑁𝑜𝑛𝑒Attention Map

Text 
Encoder

ITM

Cross Attention

……

⊙ 

Republican
(ORG)

𝜕𝐿𝐼𝑇𝑀

𝜕𝑀

Ted Cruz Heidi Cruz Republican

Cross Attention

Cross Attention

1-αα 1-αα 1-αα

Fig. 2. The overall architecture of the proposed Zero-shot Entity Visual Grounding (ZeroEVG) approach.

C. Visual Grounding

Visual Grounding aims to localize objects in images based
on referring expressions with annotated bounding boxes.
With the adoption of transformer architectures, cross-modal
grounding models [43]–[47] were developed to jointly encode
visual and textual features. Subsequent research leveraged
vision-language pre-trained models [48] to improve ground-
ing accuracy via large-scale cross-modal alignment. Further-
more, grounding-oriented pre-training [49]–[55] and multi-
modal large language models [56]–[59] have pushed the field
towards more general and open-world grounding scenarios.

However, VG methods typically assume the existence of
matching visual objects and mainly handle short referring
expressions, which limits their applicability to GMNER tasks.
RIVEG [6] introduced a visual entailment module to handle
ungroundable entities. In contrast, our method utilizes category
filtering and score thresholding to determine entity presence,
achieving superior performance over fully supervised baselines
even without visual supervision.

III. METHODOLOGY

A. Task Definition

In this paper, we focus on the visual annotation-free setting
of the GMNER task. The goal is to extract named entities,
their associated types, and their corresponding visual objects
without relying on human-annotated image supervision.

Formally, given a text-image pair (T , I), where T =
(w1, . . . , wn) is a sequence of n words and I is the associated

image, the objective is to extract a set of entity-type-object
triplets:

SGMNER = {. . . , (ei, ci, oi), . . .}, (1)

where ei is a named entity span in T , ci is the entity type
from a predefined entity type set, oi = (ox1

i , oy1

i , ox2
i , oy2

i ) is
the bounding box of the visual object corresponding to ei, or
None if ei is not visually grounded.

Note that unlike traditional GMNER methods that require
both text and image annotations for training, our approach is
trained solely on a text-only NER corpus D. During training,
the model learns entity recognition from textual supervision
only, without relying on any aligned visual annotations. At
inference time, however, the model is provided with both the
input text and the corresponding image. The visual information
is then incorporated through the designed grounding module
to enhance entity disambiguation and visual grounding.

To achieve Visual Annotation-Free GMNER, we propose a
framework consisting of a base NER model trained on D and
a Zero-shot Entity Visual Grounding (ZeroEVG) approach,
which are detailed in the next two subsections.

B. Named Entity Recognition

In our framework, we employ a standard NER model to
extract named entities and their corresponding types from
text. Since our framework is agnostic to the choice of NER
models, any fine-tuned NER model can be adopted. Specif-
ically, we consider three representative models trained on
the text-only NER corpus D: (1) BARTNER-None [60],
which formulates NER as a span-based index generation
task using a BART encoder-decoder architecture to directly
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generate entity span boundaries along with their types; (2) T5-
Paraphrase [10], a text-only baseline adapted from TIGER
that converts structured entity–type–object triples into natural
language sentences and leverages the generative capacity of
T5 to produce paraphrased outputs; (3) RoBERTa-CRF [61],
a robust sequence labeling baseline that encodes sentences
with RoBERTa and applies a CRF decoding layer to capture
label dependencies and ensure valid tag transitions, thereby
enhancing the robustness of token-level predictions.

C. Zero-Shot Entity Visual Grounding

After detecting named entities using the trained NER model,
we propose a Zero-shot Entity Visual Grounding (ZeroEVG)
approach to identify the visual presence of each detected
entity and localizes the corresponding visual object for each
groundable entity. As illustrated in Fig. 2, ZeroEVG consists of
three modules: (1) Candidate Object Generation, which filters
candidate visual objects based on entity types; (2) Entity-
Object Matching, which computes the semantic similarity
between entities and candidate objects; and (3) Entity Visual
Localization, which leverages a variant of GradCAM over
cross-attention maps of VLMs to identify relevant image
regions and predict bounding boxes.

1) Candidate Object Generation Module: Object Detec-
tion. Given an input image I , we follow previous studies [1],
[10] by using pre-trained object detectors like VinVL [12]
to generate object proposals within the image. We then rank
these object proposals based on their prediction confidence and
retain the top-K objects, along with their predicted categories
(e.g., girl, dog, church).

Category Filter. We further apply a category filtering
strategy to refine the candidate visual objects. Specifically,
given each predefined entity type (e.g., Person, Location), we
leverage the widely-used GPT-4o model [62] once for each
dataset–detector combination in an offline step, independent of
training and inference, to identify all matched object categories
pre-defined by object detectors (the exact prompt template is
provided in the Appendix). Object proposals are retained if
their object categories match the predefined entity types:

{tk, ok}nk=1 = Object-Detector(I,K), (2)
tk ∈ S(c), (3)
ok = (ox1

k , oy1

k , ox2

k , oy2

k ), (4)

where ok is one of the top-K visual objects, tk is the predicted
category of ok, and S(c) refers to the set of object categories
matching predefined entity types. This category-based filtering
significantly narrows down the search space, ensuring that only
relevant candidates are kept, without the need for an exhaustive
search over all object proposals.

2) Entity-Object Matching Module: Based on the detected
named entities and candidate objects, the entity-object match-
ing module aims to identify whether a named entity is matched
with any candidate object in the image.

To achieve this, we compute the semantic similarity be-
tween each entity-object pair using a pre-trained VLM named
CLIP [11]. For each detected entity ei, we generate a text
prompt xi “a picture of named entity, a/an entity type”, which

includes the entity and its corresponding type. xi is then fed
into the CLIP text encoder to obtain the text embedding xt

i.
Simultaneously, we crop the image region corresponding to
each candidate object oj and pass it through the CLIP image
encoder to obtain the image embedding xv

j . The similarity
between the entity ei and the object oj is computed as their
dot product below:

clip-score(ei, oj) = xt
i · xv

j , (5)

where · denotes the dot product operation. If the CLIP
similarity scores between a detected entity and all candidate
objects are lower than a predefined threshold β, the entity is
considered ungroundable; otherwise, it is deemed groundable.

3) Entity Visual Localization Module: After detecting the
groundable entities, the entity visual localization module aims
to localize their corresponding visual objects. To accomplish
this without relying on fine-grained image annotations, we
leverage the large-scale pre-trained VLM named BLIP [63]
and apply a variant of GradCAM [17] to its image-text
matching (ITM) loss to identify the most relevant regions in
the image for each groundable entity.

Specifically, for each groundable entity ek, we first feed its
text prompt xk and the input image I to the ITM network of
BLIP. We then apply a variant of the GradCAM interpretability
method [64] to highlight the most important image regions
by computing the gradient of ITM loss with respect to the
attention maps. Formally, let Xv ∈ Rp×Dv

and Xt ∈ Rq×Dt

represent the image feature map and the embedding of the
text prompt, respectively, where p is the number of image
patches, q is the number of textual tokens, and Dv and Dt are
the dimensionalities of the image feature map and the textual
embedding. The attention map A ∈ Rp×q at a given cross-
attention layer can be computed by:

A =
XtWqW

⊤
k X

v

√
Dt

, (6)

where Wq and Wk are the weight matrices for the query and
key projections. Inspired by GradCAM, we use the matching
label of the ITM network to compute the gradient of the ITM
loss with respect to A. This gradient indicates how much
each attention score contributes to the entity-object match. For
each groundable entity ek, we compute the relevance score of
the i-th image patch by averaging the gradients over multiple
attention heads and summing them across all the q textual
tokens:

relpatchi =
1

H

q∑
j=1

H∑
h=1

max(0,
∂LITM

∂Ah
ji

)Ah
ji, (7)

where H denotes the number of attention heads and we only
consider positive gradients.

Largest Connected Component. Next, to identify the most
relevant region for each entity, we rank all p image patches
by their relevance scores in Eq. (7) and retain the top-P
patches. We then construct a binary mask matrix with the same
dimensions as the input image, where the top-P patches are
assigned a value of 1 and the remaining patches are set to 0.
Using the fast connected-component labeling algorithm [65],
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TABLE I
STATISTICS OF THE TWITTER-GMNER AND TWITTER-FMNERG DATASETS. NOTE THAT TWITTER-FMNERG CONTAINS 51 FINE-GRAINED ENTITY

TYPES, WITH THEIR CORRESPONDING 8 COARSE-GRAINED TYPES PRESENTED HERE.

Split #Tweet #Entity #Groundable #Box Twitter-GMNER Twitter-FMNERG
Entity PER LOC ORG Other PER LOC Building ORG Product Art Event Other

Train 7,000 11,779 4,733 5,723 5,019 1,918 3,035 1,807 5,019 1,553 365 3,035 355 495 614 343
Dev 1,500 2,450 991 1,171 1,072 407 595 376 1,072 345 62 595 82 103 126 65
Test 1,500 2,543 1,046 1,254 1,104 404 638 397 1,104 327 77 638 88 106 129 74

Total 10,000 16,772 6,770 8,148 7,195 2,729 4,268 2,580 7,195 2,225 504 4,268 525 704 869 482

we scan through the binary mask matrix and group adjacent
patches (with a value of 1) into connected components based
on eight-connected connectivity. Each connected component is
a set of patches that are directly connected either horizontally,
vertically, or diagonally (in any of the eight directions).
Finally, we select the largest connected component as the most
relevant region in the image. For example, in Fig. 2, the largest
connected component of Ted Cruz is the three dark blue boxes
in the center.

Box Refinement via Weighted Scorer. However, our
preliminary studies show that GradCAM-identified regions
often cover only small patches within the candidate object,
failing to capture the full visual extent of the entity. To
address this, we refine these regions using candidate objects
from Section III-C2 to determine the final visual grounding.
Specifically, for a given entity ek and candidate object oj ,
we compute their final relevance as a weighted sum of the
CLIP similarity score and the spatial coverage of GradCAM-
highlighted regions:

rel(ek, oj) = α ∗ clip-score(ek, oj) + (1− α) ∗ z,

where α is a trade-off hyper-parameter and z is the number of
image patches in the largest connected component within the
object oj . We then rank all candidate objects based on their
relevance scores and select the highest-scoring object as the
predicted grounding.

To handle cases where GradCAM regions are scattered or
minimal (e.g., a single patch), which suggests an ungroundable
entity (e.g., Republican in Fig. 2), we introduce a threshold
γ. If the highest relevance score is lower than γ, the entity is
classified as ungroundable.

IV. EXPERIMENTS

A. Experimental Settings
Datasets. We conduct experiments on two benchmark

datasets, i.e., Twitter-GMNER [1] and Twitter-FMNERG [10].
Table I shows the basic statistics of these datasets.

Evaluation Metrics. For the GMNER task, we follow pre-
vious studies [1], [10] by evaluating entity-type-object triplets
using precision, recall, and F1 score. Specifically, for entity
and type evaluation, predictions are considered correct only
if they exactly match the ground truth. For object evaluation,
if an entity is ungroundable, the prediction is correct if it is
labeled as None. If the entity is groundable, the prediction is
correct if the intersection over union (IoU) with the ground-
truth bounding box exceeds 0.5. The correctness of each
element is computed as follows:

Ce/Ct =

{
1, pe/pt = ge/gt;
0, otherwise. (8)

Co =

1, po = go = None;
1, max(IoU1, . . . , IoUj) > 0.5;
0, otherwise.

(9)

where Ce, Ct, and Co refer to the correctness of entity, type,
and object predictions, pe, pt, and po refer to the predicted
entity, type, and object, ge, gt, and go refer to the gold entity,
type, and object, and IoUj means the IoU score between the
predicted object po with the j-th annotated bounding box go,j .

Based on this, we adopt precision (Pre.), recall (Rec.), and
F1 score as the evaluation metrics of the GMNER task:

correct =
{
1, if Ce and Ct and Co;
0, otherwise. (10)

Pre =
#correct
#predict

, Rec =
#correct

#gold
(11)

F1 =
2× Pre×Rec

Pre+Rec
(12)

where correct refers to the number of predicted triples that
match the gold triples, and #predict and #gold denote the
number of predicted and gold triples.

For the EVG task, we focus on the accuracy of object pre-
dictions. Given the ground-truth entity and type, we consider
the prediction correct if the bounding box has an IoU greater
than 0.5 for groundable entities. For ungroundable entities, a
None prediction is considered accurate.

Implementation Details. For our proposed visual
annotation-free framework, we adopt three NER models, i.e.,
BARTNER [60], T5-Paraphrase [10], and RoBERTa-CRF [61]
to extract named entities and their types. In our proposed
ZeroEVG method, we employ three object detectors, i.e.,
VinVL [12], Detic [14], and YOLO11 [66] to detect the
top-K objects, with K set to 36. For the CLIP model used in
Section III-C2, we utilize the clip-vit-base-patch32
model released by [11]. For the BLIP model used in
Section III-C3, we follow [67] by using the PNP-VQA-base
model and extracting the attention maps from its 8th layer.
Regarding hyper-parameters, we perform a grid search over
several combinations of the CLIP threshold β, top-P patches,
relevance threshold γ, and trade-off weight α. The search
space for β, P , γ, and α is in the range [19, 24], [16, 24],
[15, 19], and [0.3, 0.9], respectively. After conducting the
grid search on the validation set, we apply the best-found
parameters to evaluate the performance on the test set. We
run all the experiments on an NVIDIA RTX 3090 GPU.
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TABLE II
PERFORMANCE COMPARISON OF DIFFERENT METHODS FOR THE GMNER TASK ON TWITTER-GMNER AND TWITTER-FMNERG. NOTE THAT OUR

ZEROEVG ALSO EMPLOYS LLMS IN THE CATEGORY FILTER STAGE WITH VERY LIMITED RESOURCE CONSUMPTION.

Methods Language Object Twitter-GMNER Twitter-FMNERG
Model Detector Pre. Rec. F1 Pre. Rec. F1

Fully-Supervised

ITA-VinVL-EVG [1] BERTbase VinVL 52.37 50.77 51.56 43.05 42.51 42.78
MNER-QG [37] BERTbase VinVL 53.02 54.84 53.91 – – –
MQSPN [9] BERTbase VinVL 59.03 58.49 58.76 – – 48.57
GEM [42] BERTbase+LLMs VinVL - - 59.83 - - 50.54
RiVEG [6] (SOTA) XLMRlarge+LLMs OFAlarge 67.02 67.10 67.06 – – –

H-Index [1] BARTbase VinVL 56.16 56.67 56.41 46.83 46.28 46.55
H-Index-YOLO [1] BARTbase YOLO 54.35 53.96 54.15 45.72 45.20 45.45
TIGER [10] T5base VinVL 55.52 59.58 57.48 47.57 46.85 47.20
TIGER-YOLO [10] T5base YOLO 53.28 57.20 55.17 46.84 45.03 45.92
MQSPN-RoBERTa XLMRlarge VinVL – – 60.88 – – 50.39

Text-Supervised

BARTNER-None [60] BARTbase N.A. 44.58 44.75 44.66 36.83 37.28 37.05
BARTNER-LLaVA BARTbase LLaVA-7B 32.35 32.48 32.42 23.89 24.18 24.04
BARTNER-GPT-4o BARTbase GPT-4o 44.46 44.63 44.54 36.83 37.28 37.05
BARTNER-OV-VG BARTbase OV-VG 38.19 38.34 38.27 26.03 26.35 26.19

BERTNER-ZeroEVG (Ours) BERTbase VinVL 57.84 56.98 57.41 46.95 45.65 46.29
△ MQSPN -1.19 -1.51 -1.35 - - -2.28
BERTNER-ZeroEVG (Ours) BERTbase Detic 58.88 58.00 58.44 48.00 46.68 47.33
BERTNER-ZeroEVG (Ours) BERTbase YOLO 60.92 60.01 60.46 48.28 46.95 47.61

BARTNER-ZeroEVG (Ours) BARTbase VinVL 58.25 58.47 58.36 49.03 49.63 49.33
△ H-Index +2.09 +1.80 +1.95 +2.20 +3.35 +2.78
BARTNER-ZeroEVG (Ours) BARTbase Detic 59.54 59.77 59.65 50.35 50.96 50.65
BARTNER-ZeroEVG (Ours) BARTbase YOLO 61.73 61.97 61.85 50.78 51.40 51.08

T5-Paraphrase-ZeroEVG (Ours) T5base VinVL 59.36 58.71 59.04 49.17 48.68 48.92
△ TIGER +3.84 -0.87 +1.56 +1.60 +1.83 +1.72
T5-Paraphrase-ZeroEVG (Ours) T5base Detic 60.28 59.61 59.94 50.00 49.51 49.75
T5-Paraphrase-ZeroEVG (Ours) T5base YOLO 62.43 61.74 62.08 50.75 50.26 50.50

RoBERTaCRF-ZeroEVG (Ours) XLMRlarge VinVL 60.93 61.07 61.00 50.62 51.36 50.99
△ MQSPN-RoBERTa - - +0.12 - - +0.60
RoBERTaCRF-ZeroEVG (Ours) XLMRlarge Detic 62.02 62.17 62.10 51.63 52.38 52.00
RoBERTaCRF-ZeroEVG (Ours) XLMRlarge YOLO 64.18 64.33 64.26 52.17 52.93 52.55

B. Comparison Systems

GMNER Methods. To show the effectiveness of our pro-
posed visual annotation-free framework, we adopt a series
of visual annotation-free (i.e., text-supervised) and fully-
supervised methods as our comparison systems. First, we con-
sider the following text-supervised methods: (1) BARTNER-
None employs an index generation method named BART-
NER [60] to identify entity-type pairs for the NER task
and then sets the visual object prediction to the major-
ity class None. (2) BARTNER-LLAVA, BARTNER-GPT-4o,
and BARTNER-OV-VG are three variants of BARTNER-None,
where the entity visual grounding model is replaced by LLaVA
[68], GPT-4o [62], and an open-vocabulary visual grounding
model OV-VG [69], respectively.

Additionally, we also consider a series of existing fully-
supervised methods for comparison: (3) ITA-VinVL-EVG em-
ploys an image translation-based sequence labeling method
ITA [34] for MNER and use VinVL-EVG [1] for visual
grounding. (4) MNER-QG [37] is an end-to-end Machine
Reading comprehension framework with Query Grounding for
GMNER. (5) H-index [1] is a hierarchical index generation
model that combines text with VinVL features to generate
entity–type–object triplets in a hierarchical decoding process.
(6) H-index-YOLO [1] is a variant of H-index where the
original object detector VinVL is replaced with YOLO11 [66].

(7) TIGER [10] is a T5-based framework that formulates
GMNER as a paraphrase generation task, taking both the
text and VinVL-extracted visual features as input to generate
the paraphrased entity–type–object sequences. (8) TIGER-
YOLO [10] is a TIGER variant that replaces the original
VinVL detector with YOLO11 [66]. (9) MQSPN-RoBERTa
[9] is a unified framework which adaptively learns intra-
entity relationships and establish inter-entity relationships from
global optimal matching view. (10) RiVEG [6] is a pipeline
method that uses LLMs as bridges to reformulate the GMNER
task into a unified MNER-Visual Entailment-Visual Grounding
task.

EVG Methods. The Entity Visual Grounding (EVG) task
is a sub-task of GMNER. Given an entity name and its type,
the goal of EVG is to determine whether the entity is visually
present in the corresponding image and, if so, to provide its
bounding box. First, we consider four zero-shot EVG methods
as baselines, i.e., None, LLaVA [68], GPT-4o, and OV-VG
[69], which are ablated models of the text-supervised baseline
methods for GMNER. To show the advantage of our ZeroEVG
method, we also compare it with a fully-supervised method
VinVL-EVG [1], which encodes the input named entities and
types with BERT [70] and integrates it with visual objects
from VinVL [12] via a Cross-Modal Transformer to predict
the entity presence in each object.
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TABLE III
PERFORMANCE COMPARISON OF DIFFERENT METHODS FOR THE ENTITY

VISUAL GROUNDING (EVG) TASK.

Methods Twitter-GMNER Twitter-FMNERG

withbox nobox overall withbox nobox overall

Fully-Supervised

VinVL-EVGBERT 36.23 89.71 67.71 37.95 83.86 67.95

Zero-Shot

None 0.00 100.00 58.81 0.00 100.00 58.81
LLaVA 54.49 29.46 39.76 53.92 26.65 37.87
GPT-4o 0.96 96.19 57.12 0.96 96.19 57.12
OV-VG 3.06 85.10 51.36 6.21 66.93 41.96
ZeroEVGVinVL 46.94 91.92 73.42 51.53 91.25 74.91
ZeroEVGDetic 46.46 93.79 74.32 52.77 92.85 76.37
ZeroEVGYolo 52.68 93.19 76.52 53.25 94.12 77.31

C. Main Results

Results on the GMNER Task. We report the results of
different GMNER methods in Table II. First, it is clear that
our method significantly outperforms other text-supervised
methods. Specifically, BARTNER-ZeroEVG with VinVL con-
sistently outperforms the four BARTNER-based comparison
methods by more than 10% in terms of F1 score across the two
datasets. Second, when adopting the same language model and
object detector, it is surprising that our proposed method per-
forms better than the corresponding fully-supervised methods,
i.e., H-index, TIGER, and MQSPN-RoBERTa. For instance,
our BARTNER-ZeroEVG method outperforms H-index by
1.95% and 2.78% points in F1 score on Twitter-GMNER and
Twitter-FMNERG datasets, respectively. Lastly, replacing the
object detector VinVL with Detic or YOLO leads to further
performance gains. Using YOLO as the object detector in
RoBERTaCRF-ZeroEVG leads to an F1 score of 64.26% on
Twitter-GMNER and 52.55% on Twitter-FMNERG, showing
performance comparable to the state-of-the-art results achieved
by RiVEG.It is worth noting that RiVEG relies on both
text and visual supervisions and substantial training resource
requirements, whereas our method only relies on the text
supervision. In contrast, when H-index and TIGER are re-
implemented with YOLO, their performance drops to 54.15%
and 45.92% in F1 score on Twitter-GMNER and Twitter-
FMNERG, respectively. This degradation mainly stems from
their strong reliance on detector-specific visual features, while
our ZeroEVG only leverages bounding boxes and labels,
making it more robust to different detectors.

Impact of NER Backbones. We further analyze the impact
of different textual NER models. RoBERTaCRF-ZeroEVG
achieves the best overall results (64.26% and 52.55% F1
scores on the two datasets with YOLO), while T5-Paraphrase-
ZeroEVG also surpasses TIGER by clear margins. Al-
though BERTNER-ZeroEVG and BARTNER-ZeroEVG yield
slightly lower absolute scores, they still outperform the fully-
supervised counterparts under the same backbone and detector,
such as ITA-VinVL-EVG, MNER-QG, and H-index. These
findings verify the backbone-agnostic nature of ZeroEVG and
highlight that more powerful NER backbones can further
enhance GMNER performance.

TABLE IV
ABLATION STUDY ON THE EVG TASK WITH VINVL AS THE OBJECT

DETECTOR.

Ablation Twitter-GMNER Twitter-FMNERG

withbox nobox overall withbox nobox overall

Ours 46.94 91.92 73.42 51.53 91.25 74.91
w/o Category Filter 34.13 79.16 60.64 38.72 73.15 58.99
w/o Matching 68.07 32.06 46.87 67.69 42.42 52.81
w/o Localization 66.54 35.40 48.21 67.21 48.23 56.04
w/o Weighted Scorer 67.59 32.06 46.68 67.02 42.42 52.54

Results on the EVG Task. Table III shows the results of
different EVG methods. First, it is evident that our ZeroEVG
method outperforms all zero-shot baseline methods across
both datasets. Second, ZeroEVG surpasses the fully-supervised
method VinVL-EVG by 5.71% and 6.96% on the Twitter-
GMNER and Twitter-FMNERG datasets, respectively. Finally,
we split the test set into two subsets: one for groundable
entities (i.e., withbox) and one for ungroundable entities (i.e.,
nobox). The results for each subset are reported separately.
Notably, while most methods tend to predict entities as un-
groundable, our ZeroEVG method achieves a balanced trade-
off between the prediction of groundable and ungroundable
entities.

V. IN-DEPTH ANALYSIS

A. Ablation Study

To assess the impact of each component of our proposed
ZeroEVG method, we conduct ablation study and report the
results in Table IV. First, we remove the Category Filter in
Candidate Object Generation Module, which leads to a decline
of 12.78% and 15.92% points on the two datasets. This shows
that the Category Filter effectively removes irrelevant objects
from unrelated categories, reducing noise in the subsequent
Matching and Localization modules. Second, we remove the
Matching Module and Localization Module separately. Specif-
ically, after applying the Category Filter (if applicable), we
directly select the bounding box with the largest GradCAM-
highlighted region or the highest CLIP similarity. We observe
that while this change improves accuracy on the groundable
subset, it harms accuracy on the ungroundable subset, resulting
in a decrease in overall performance. Finally, we remove the
Weighted Scorer, which also results in a performance degra-
dation. This demonstrates the contribution of the Weighted
Scorer in refining the model’s decision-making process.

B. Results on Different Entity Types

We further evaluate the performance across 8 coarse-grained
entity types of the Twitter-FMNERG dataset, as shown in
Table V. We find that our method, which operates without
visual supervision, outperforms the fully supervised TIGER
model on four of the entity types, including the Person type,
which appears most frequently in this dataset. Across all
entity types, our ZeroEVG method consistently performs better
than any variant with an ablated module, demonstrating the
effectiveness of the proposed approach.
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TABLE V
F1 SCORES OF OUR T5-PARAPHRASE-ZEROEVG METHOD AND

TIGER [10] ON 8 COARSE-GRAINED ENTITY TYPES WITH VINVL AS THE
OBJECT DETECTOR ON TWITTER-FMNERG.

Methods Art Build. Event LOC ORG Other PER Prod.

TIGER 43.27 40.00 48.39 67.69 46.75 48.28 43.78 27.38

ZeroEVG 45.45 40.76 46.64 65.54 44.43 46.04 48.78 37.80
w/o Category filter 27.27 35.67 38.74 59.72 34.76 38.85 35.14 29.27
w/o Macthing 35.35 31.85 25.30 39.82 20.11 34.53 44.63 24.39
w/o Localization 37.37 35.67 30.04 43.19 21.04 34.53 45.98 25.61
w/o W-Scorer 35.35 31.85 25.30 39.82 20.11 34.53 44.17 24.39

C. Sensitivity of Hyper-parameters

As shown in Fig. 3, we conduct a sensitivity analysis on
the four hyper-parameters across the development set of two
datasets. Note that since the performance trend of YOLO and
that of the other two object detectors are similar, we only
report the results of using YOLO as the object detector.

We observe that as the CLIP threshold increases beyond a
certain point, the performance decreases. This can be attributed
to the fact that when β is set too high, the model becomes
overly restrictive, rigidly classifying most candidate boxes as
mismatched, which negatively impacts performance. Similarly,
as the relevance threshold γ increases, performance initially
improves before slightly declining. When γ is too small, the
entity matching criteria become overly lenient, potentially
leading to the misclassification of ungroundable entities as
groundable. Conversely, an excessively large γ may cause the
model to skip objects that meet the matching requirements.
For the top-P parameter, performance follows a similar trend,
initially increasing before declining, though the overall fluctu-
ation remains relatively small. Regarding the weight parameter
α, performance also exhibits an increasing-then-decreasing
pattern, with peak performance attained at 0.6 and 0.5 for
the two datasets, respectively.

D. Case Study

To provide a clearer understanding of our method’s decision
process and highlight its advantages and the necessity of
each module of ZeroEVG, we analyze four test cases from
the Twitter-FMNERG dataset in Table VI. In case (a), the
Matching module mistakenly identifies the man in the image
Tiger Woods as Lindsey Vonn. However, the Localization
module correctly highlights the relevant region, allowing our
method to make an accurate prediction. In case (b), neither
the Matching nor the Localization module alone can generate
the correct result. However, our ZeroEVG method effectively
integrates their predictions, enabling our method to reach the
correct prediction. In case (c), while the Localization module
fails to attend to the correct area, the Matching module assigns
the highest score to Hermione, ultimately leading to the correct
prediction. In case (d), while the Localization module correctly
identifies the image as a game interface, its ability to highlight
the relevant area is constrained by the top-P patches selected
in the attention map. In this case, the Matching module
compensates for this limitation, guiding the model for the right
prediction.

(a) Clip threshold β (b) Top-P

(c) Relevance Threshold γ (d) Trade-off Weight α

Fig. 3. The sensitivity of different hyper-parameters on the development set
of the EVG task with YOLO as the object detector.

VI. CONCLUSION

In this paper, we introduced a visual annotation-free frame-
work for GMNER by leveraging text-only NER data and
zero-shot entity visual grounding, eliminating the need for
costly multimodal annotations. We proposed a novel method
ZeroEVG, which integrates pre-trained VLMs and object
detectors to achieve zero-shot visual grounding of entities.
Experiments on two datasets show that our framework out-
performs other text-supervised approaches and even surpasses
fully-supervised methods using the same backbone models.
These results demonstrate the potential of visual annotation-
free paradigm for scalable GMNER applications.

While our proposed visual annotation-free framework
demonstrates substantial improvements over existing methods,
it does have several limitations. First, we did not incorporate
contextual information in our ZeroEVG method, which may
hinder the localization accuracy in more complex scenarios.
Additionally, the threshold and weight parameters in our
approach require grid search for optimal selection on the
development set. We plan to propose an automatic parameter
selection method without the need of development set in the
future. Furthermore, our experiments were conducted solely
on two benchmark datasets, and the method’s effectiveness in
other domains remains to be explored.

VII. APPENDIX

A. LLM Prompt Template for Category Filtering
For category filtering, we provide all object categories

from the object detector along with entity types to GPT-4o,
requesting the model to associate each entity type with the
relevant object categories. We then manually review and refine
the results to ensure accurate alignments.

Table VII presents the prompt template we used to perform
category filtering with GPT-4o.
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TABLE VI
CASE STUDY ON FOUR TEST SAMPLES OF TWITTER-FMNERG BASED ON VINVL. ✓ AND × ARE CORRECT AND INCORRECT PREDICTIONS.

Impact of Localization Module Impact of Weighted Scorer Impact of Entity-Object Matching Module

RT @ ReutersIndia : Tiger Woodsathlete
and Olympic skier Lindsey Vonnathlete
break up

Stockholm Sluice Areapark to be recon-
structed : start 2016 , finish 2022 , cost
1beuro ! # Slussen # Stockholm city #
DN @ SwedeninHR

( Radio Timesnews agency ) :Did you no-
tice that # Hermionecharacter waited six #
Harry Potter books to give Roncharacter
a . .

RT @ Kotaku : A new world record for
beating Super Mario 64game with no
stars

(a) Lindsey Vonn, athlete, Box-1 (b) Stockholm Sluice Area, park, None (c) Hermione, character, Box-1 (d) Super Mario 64, game, Box-1

Filtered boxes: Box-2, 3, 4 Filtered boxes: Box-2, 3, 4, 5, 6, 7, 8, 9 Filtered boxes: Box-2, 3, 4 Filtered boxes: Box-2, 3, 4
ZeroEVG: Box-3 ✓ ZeroEVG: None ✓ ZeroEVG: Box-2 ✓ ZeroEVG: Box-2 ✓
w/o Localization: Box-2 × w/o Localization: Box-2 × w/o Localization: Box-2 ✓ w/o Localization: Box-2 ✓
w/o Matching: Box-3 ✓ w/o Matching: Box-3 × w/o Matching: Box-3 × w/o Matching: Box-3 ×
w/o Weighted Scorer: Box-3 ✓ w/o Weighted Scorer: Box-3 × w/o Weighted Scorer: Box-3 × w/o Weighted Scorer: Box-3 ×

TABLE VII
PROMPT TEMPLATE FOR CATEGORY FILTERING WITH GPT-4O

Instruction: Given a list of entity types (PER, LOC, ORG...)
and the set of object categories detected by an open-vocabulary
detector, assign each entity type to its most relevant object
categories. The output should be in JSON format.
Objects: person, man, shirt, hair, letter, face, wall, tree, woman,
window, . . .

Answer: { “PER”: [ “man”, “woman”, “person”, “girl”, “boy”,
“spectator”, “child”, “lady”, “baby”, “couple”, . . . ] }
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