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Abstract1

Research in explainable AI (XAI) aims to provide insights into the decision-making2

process of opaque AI models. To date, most XAI methods offer one-off and static ex-3

planations, which cannot cater to the diverse backgrounds and understanding levels of4

users. With this paper, we investigate if free-form conversations can enhance users’ com-5

prehension of static explanations in image classification, improve acceptance and trust in6

the explanation methods, and facilitate human-AI collaboration. We conduct a human-7

subject experiment with 120 participants. Half serve as the experimental group and8

engage in a conversation with a human expert regarding the static explanations, while9

the other half are in the control group and read the materials regarding static explanations10

independently. We measure the participants’ objective and self-reported comprehension,11

acceptance, and trust of static explanations. Results show that conversations significantly12

improve participants’ comprehension, acceptance (Davis, 1989), trust, and collaboration13

with static explanations, while reading the explanations independently does not have14

these effects and even decreases users’ acceptance of explanations. Our findings highlight15

the importance of customized model explanations in the format of free-form conversations16

and provide insights for the future design of conversational explanations.17

Keywords: Explainable AI (XAI), Conversation, Explainability, Interactive Ex-18

planation, Human-AI Interaction, XAI for Computer Vision19
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Introduction1

The rapid advancement of Artificial Intelligence (AI) is largely powered by opaque2

deep neural networks (DNNs), which are difficult to interpret by humans (Bodria et al.,3

2023). The lack of transparency prevents verification of AI decisions by human domain ex-4

perts and is especially concerning in areas of high-stake decisions, such as healthcare and5

law enforcement, where erroneous algorithmic decisions could lead to severe consequences6

(Cai, Winter, Steiner, Wilcox, & Terry, 2019; Caruana et al., 2015; Zheng et al., 2023)7

and erosion of public trust (Powles & Hodson, 2017; Quinn, Senadeera, Jacobs, Coghlan,8

& Le, 2021). To improve the explainability of AI models, numerous eXplainable Artificial9

Intelligence (XAI) methods have been proposed (for detailed reviews, we refer readers to10

Bodria et al. (2023); Danilevsky et al. (2020); F. Yang, Du, and Hu (2019)). It has been11

reported that explainability enhances user understanding (Bansal et al., 2021) and trust12

(González et al., 2021; R. Luo, Du, & Yang, 2022) in AI models, improves human-AI13

collaboration in decision-making (Lai & Tan, 2019; Nguyen, Taesiri, & Nguyen, 2022),14

and helps AI developers identify and rectify model errors (Adebayo, Muelly, Liccardi, &15

Kim, 2020; Idahl, Lyu, Gadiraju, & Anand, 2021). Despite these successes, a number of16

recent studies find that the explanations often do not resolve user confusion regarding17

the neural networks they are purported to explain (Bansal et al., 2021; Lakkaraju, Slack,18

Chen, Tan, & Singh, 2022; Liao, Gruen, & Miller, 2020; Poursabzi-Sangdeh, Goldstein,19

Hofman, Vaughan, & Wallach, 2021; Shen, Huang, Wu, & Huang, 2023; Slack, Krishna,20

Lakkaraju, & Singh, 2023; Wang & Yin, 2021; Y. Zhang, Liao, & Bellamy, 2020). These21

seemingly conflicting findings warrant further investigation.22

We postulate that two major factors contribute to the ineffectiveness of AI expla-23

nations. First, the explanations do not properly account for average users’ knowledge24

of machine learning, which may be insufficient to establish causal relations between the25

explanations and the model behaviors (He, Hong, Zheng, & Zhang, 2023; Ma et al., 2023;26

Poursabzi-Sangdeh et al., 2021; Springer & Whittaker, 2019). Communication theory27

posits that effective communication requires the senders and receivers to establish com-28

mon ground (Clark & Brennan, 1991; Clark & Marshall, 1981). However, experts usually29
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find it hard to accurately estimate what laypeople know (Miller, 2019; Wilkesmann &1

Wilkesmann, 2011; Wittwer, Nückles, & Renkl, 2008). To make matters worse, under-2

estimating and overestimating the receivers’ knowledge level are equally detrimental to3

communication (Lakkaraju et al., 2022; Wittwer et al., 2008). As a result, the explana-4

tions designed by experts are almost always at a mismatch with the laypersons’ actual5

knowledge level.6

Second, users of XAI have diverse intentions and information needs (Ehsan et al.,7

2021; He et al., 2023; Liao et al., 2020; Wang & Yin, 2021). For example, Liao and Varsh-8

ney (2021) identifies five different objectives of users of explanations, including model9

debugging, assessing the capabilities of AI systems, making informed decisions, seeking10

recourse or contesting the AI, and auditing for legal or ethical compliance. One static11

explanation usually cannot satisfy all objectives and purposes. Therefore, researchers12

have suggested injecting interactivity to model explanations in order to establish com-13

mon ground, address knowledge gaps, and create customized explanations that adapt14

to the users (Abdul, Vermeulen, Wang, Lim, & Kankanhalli, 2018; Cheng et al., 2019;15

Guesmi et al., 2023; Lakkaraju et al., 2022; Rohlfing et al., 2020; Schmid & Wrede, 2022).16

Existing work on interactive explanations can be broadly categorized into two types.17

The first type, interactive machine learning (Amershi, Cakmak, Knox, & Kulesza, 2014;18

Fails & Olsen Jr, 2003), allows users to provide feedback and suggestions to the machine19

learning model using model explanations. Their primary goal is to improve machine20

learning performances, rather than explaining model behaviors to layperson users. In21

this setting, explanations have been shown to improve user satisfaction (Smith-Renner et22

al., 2020) and feedback quality (Kulesza, Burnett, Wong, & Stumpf, 2015; Liang, Zou, &23

Yu, 2020). The second type aims to elucidate model behaviors by allowing users to freely24

modify input features and observe how outputs change while showing feature attribution25

explanations (Cheng et al., 2019; Hohman, Head, Caruana, DeLine, & Drucker, 2019;26

H. Liu, Lai, & Tan, 2021; Tenney et al., 2020). This type of interactivity has been shown27

to improve user understanding (Cheng et al., 2019) and perceived usefulness (H. Liu et28

al., 2021) of AI models. However, the effective use of these interactive approaches still29
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requires a rudimentary understanding of machine learning, such as the generic relation1

between input and output, or what model properties the interpretations reveal. These2

interactive explanations cannot answer most types of follow-up questions laypeople may3

have.4

Free-form conversations that accompany static explanations are arguably the most5

versatile mode of interaction as they allow users to ask arbitrary follow-up questions and6

receive explanations tailored to their backgrounds and needs (Feldhus, Ravichandran,7

& Möller, 2022; Lakkaraju et al., 2022; Liao et al., 2020). Through interviews with8

decision-makers, Lakkaraju et al. (2022) discover that they have a strong preference for9

explanations in natural language dialogue. They argue that conversational explanations10

satisfy five requirements of interactive explanations and are ideal for users with limited11

machine learning knowledge. With the progress in conversational characters (Ni, Young,12

Pandelea, Xue, & Cambria, 2023; Shuster et al., 2022; T. Zhang et al., 2022), especially13

knowledge-based question answering (Lan et al., 2021; M. Luo, Fang, Gokhale, Yang, &14

Baral, 2023; L. Zhang et al., 2023) powered by large language models (Ouyang et al.,15

2022; Touvron et al., 2023; Zhao et al., 2023), AI systems that can answer questions16

about their own decisions appear to be within our reach in the near future. However,17

before investing effort to develop such a chatbot, it would be beneficial to empirically18

quantify the effects of conversational explanations.19

In the current study, we conduct Wizard-of-Oz experiments to investigate how con-20

versations assist users in understanding static explanations of image classification models,21

improving acceptance and trust in XAI methods, and selecting the best AI models based22

on explanations. Specifically, a total of 120 participants join our experiments. We first23

present them with static explanations for an image classification task and measure their24

objective understanding and subjective perceptions of static explanations. After that,25

half of the participants, who are assigned to the experimental group, seek to clarify any26

doubts with an online textual conversation with an AI system, played by human XAI27

experts. The other half of the participants, assigned to the control group, read materials28

about the static explanations independently. After the conversation or reading session,29
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participants complete the same pre-session measurements. From the results, we estimate1

the effects of conversational explanations.2

The experimental measurements include both an objective component and a subject3

component of the users’ understanding and perception. In the objective evaluation, from4

three candidate neural networks, the users need to choose one network that would be5

the most accurate on test data so far unobserved, using information from the static6

explanations. This task, known as model selection, is one of the most fundamental tasks7

for machine learning practitioners (Anderson & Burnham, 2004). By design, the three8

candidate networks make exactly the same predictions on the same inputs but have9

different rationales for the predictions, as revealed by the static explanations. Hence, the10

only way for the users to make the right choice is to correctly understand the explanations.11

The subjective evaluation contains 13 questions requiring users to self-report three aspects12

of their perceptions of the static explanations: comprehension, acceptance, and trust.13

Results show that free-form conversations with XAI experts in the Wizard-of-Oz14

setting significantly improve comprehension, acceptance, trust, and collaboration with15

static explanations. Our study underscores the effects of free-form conversations on neural16

network explainability in practice and provides insights into the future development of17

conversational explanations. To the best of our knowledge, this is the first study of how18

free-form conversations may facilitate neural network explainability in practice.19

Related Work20

In this section, we review three bodies of research that motivate our study. First,21

we explore the existing work of static Explainable Artificial Intelligence (XAI). Second,22

we discuss interactive explanations, especially the limitations of existing methods and the23

need for conversations to enhance explainability. Lastly, we examine different types of24

human-AI collaboration and the design of the subjective evaluation during collaboration.25

Static Explanation26

Explainable Artificial Intelligence (XAI) refers to those models that can explain ei-27

ther the learning process or the outcome of AI predictions to human users (F. Yang et al.,28
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2019). Static XAI involves models that provide a fixed, one-time explanation, without the1

capability for further user interaction or exploration. They are usually categorized into2

two groups: self-explanatory models and post-hoc methods. Post-hoc methods can be cat-3

egorized into feature attribution methods and example-based methods. Self-explanatory4

models are inherently transparent, offering clarity in their decision-making processes and5

facilitating explainability (Bodria et al., 2023; Danilevsky et al., 2020). Examples of such6

models include linear regression, logistic regression, decision trees, Naive Bayes, atten-7

tion mechanism (Bahdanau, Cho, & Bengio, 2014), decision sets (Lakkaraju, Bach, &8

Leskovec, 2016), rule-based models (Rudziński, 2016; H. Yang, Rudin, & Seltzer, 2017),9

among others. However, the requirements of self-explanatory models place constraints10

on model design, which may cause them to underperform in complex tasks. Conversely,11

the majority of recent XAI methods are post-hoc XAI methods, which can be used for12

an already developed model that is usually not inherently transparent (Adadi & Berrada,13

2018; Bodria et al., 2023; Y. Chen, Li, Yu, Wu, & Miao, 2021; Ribeiro, Singh, & Guestrin,14

2016; Selvaraju et al., 2017; Verma, Dickerson, & Hines, 2020). These methods often do15

not attempt to explain how the model works internally, but instead, employ separate16

techniques to extract explanatory information. Post-hoc XAI methods can be viewed17

as reverse engineering processes that employ other independent explanatory models or18

techniques to extract explanatory information without altering, elucidating, or even un-19

derstanding the inner workings of the original black-box model. There are two main20

groups of methods to generate post-hoc XAI explanations, i.e., feature attribution meth-21

ods and example-based methods.22

Feature Attribution Methods. Feature attribution methods (Alvarez-Melis &23

Jaakkola, 2017; Cortez & Embrechts, 2013; Hu, Chen, Nair, & Sudjianto, 2018; Ignatiev,24

Narodytska, & Marques-Silva, 2019; N. Liu, Huang, Li, & Hu, 2018; Lundberg & Lee,25

2017; Ribeiro et al., 2016; Selvaraju et al., 2017; Shih, Choi, & Darwiche, 2018; Simonyan,26

Vedaldi, & Zisserman, 2013; Sundararajan, Taly, & Yan, 2017) explain model predictions27

by investigating the importance of different input features to final predictions. There28

are two main types of feature attribution methods, gradient-based methods (Cortez &29
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Embrechts, 2013; Lundberg & Lee, 2017; Selvaraju et al., 2017; Simonyan et al., 2013;1

Sundararajan et al., 2017) and surrogate methods (Alvarez-Melis & Jaakkola, 2017; Hu et2

al., 2018; Ignatiev et al., 2019; N. Liu et al., 2018; Ribeiro et al., 2016; Shih et al., 2018).3

Gradient-based methods use gradients/derivatives to evaluate the contribution of a model4

input on the model output. An example method is Grad-CAM (Selvaraju et al., 2017).5

It superimposes a heatmap on the regions of important input features by weighting the6

activations of the final convolutional layer by their corresponding gradients and averaging7

the resulting weights spatially. Besides directly calculating the importance score of input8

features, several methods propose to use a simple and understandable surrogate model,9

e.g., a linear model, to locally approximate the complex deep neural model. Surrogate10

models can explain the predictions from the complex deep neural model due to their11

inherent interpretable nature. LIME and its variants are typical methods for generating12

local surrogate models. LIME (Ribeiro et al., 2016) builds a linear model locally around13

the data point to be interpreted and generates an instance-level explanation for the14

output.15

Example-based Methods. Example-based methods (Y. Chen et al., 2021; Jeyaku-16

mar, Noor, Cheng, Garcia, & Srivastava, 2020; Mothilal, Sharma, & Tan, 2020; Poyiadzi,17

Sokol, Santos-Rodriguez, De Bie, & Flach, 2020; Tran, Ghazimatin, & Saha Roy, 2021;18

Verma et al., 2020) refer to those that explain predictions of black-box models by iden-19

tifying and presenting a selection of similar or representative instances. Those examples20

can be selected or generated from different perspectives, such as training data points21

that are the most influential to the parameters of a prediction model or the predictions22

themselves (C. Chen et al., 2019; Y. Chen et al., 2021; Yoon, Arik, & Pfister, 2020),23

counterfactual examples that are similar to the input query but with different predic-24

tions (Karimi, Barthe, Balle, & Valera, 2020; Mothilal et al., 2020; Poyiadzi et al., 2020;25

Sharma, Henderson, & Ghosh, 2019; Tran et al., 2021; Verma et al., 2020; Wachter, Mit-26

telstadt, & Russell, 2017), or prototypes that contain semantically similar parts to input27

instances (Bien & Tibshirani, 2011; Croce, Rossini, & Basili, 2019; Doshi-Velez, Wallace,28

& Adams, 2015; Jeyakumar et al., 2020; B. Kim, Khanna, & Koyejo, 2016; Mikolov,29
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Sutskever, Chen, Corrado, & Dean, 2013).1

In this work, we mainly focus on feature attribution methods as they directly high-2

light the importance of input features, making the decision-making process of models more3

intuitive (S. S. Y. Kim, Watkins, Russakovsky, Fong, & Monroy-Hernández, 2023) than4

example-based methods for laypeople. Specifically, we select Grad-CAM from gradient-5

based methods and LIME from surrogate methods to conduct conversational explanations6

with participants.7

Interactive Explanation8

Several studies emphasize the need for interactivity in XAI methods (Abdul et al.,9

2018; Lakkaraju et al., 2022; Rohlfing et al., 2020; Schmid & Wrede, 2022). For instance,10

Lakkaraju et al. (2022) find that decision-makers strongly prefer interactive explanations.11

Similarly, a literature analysis by Abdul et al. (2018) suggests that interactions can help12

users progressively explore and gather insights from static explanations. Rohlfing et al.13

(2020) reason that explanations should be co-constructed in an interaction between the14

explainer and the explainee, adapting to individual differences since the human under-15

standing process is dynamic. From an interdisciplinary perspective, Schmid and Wrede16

(2022) underscore the necessity of user-XAI interactions to adapt to diverse information17

requirements.18

To integrate interactivity and explainability, two primary methodologies emerge.19

One group of methods focuses on using explanations to help users provide feedback about20

improving machine learning models. In these methods, the interactivity lies in the cycle21

of model explanation, user feedback, and model improvement. Explanations aim to help22

users better understand model decisions and provide valuable feedback. As a result,23

machine learning models can be incrementally trained with additional loss terms from24

explanatory feedback (Kulesza et al., 2015; Lertvittayakumjorn, Specia, & Toni, 2020;25

Liang et al., 2020; Ross, Hughes, & Doshi-Velez, 2017; Schramowski et al., 2020; Smith-26

Renner et al., 2020) or with added data points (Alkan et al., 2022; Biswas & Parikh, 2013;27

Teso, Bontempelli, Giunchiglia, & Passerini, 2021; Teso & Kersting, 2019). However,28
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these methods are aimed at machine learning practitioners who can well understand1

and utilize explanations. Another group focuses on enhancing user understanding of2

explanations by allowing them to modify the model input and observe changes in the3

corresponding output. Such interactivity has been shown to improve user comprehension4

and the perceived utility of AI models (Cheng et al., 2019; H. Liu et al., 2021). For5

instance, Tenney et al. (2020) and Hohman et al. (2019) propose different user interfaces6

that allow for debugging and understanding machine learning models by examining input-7

output relationships. However, a rudimentary understanding of machine learning is still8

required for effective utilization of these interfaces, such as the generic relation between9

input and output, or what model properties the interpretations reveal.10

HCI researchers have recently proposed that XAI methods should align with the11

ways humans naturally explain mechanisms. Specifically, Lombrozo (2006) argues that an12

explanation is a byproduct of a conversational interaction process between an explainer13

and an explainee. Miller (2019) argues that explanations should contain a communica-14

tion process, where the explainer interactively provides the information required for the15

explainee to understand the causes of the event through conversations. Building on this16

perspective of human explanations, recent works envision "explainability as dialogue" to17

provide explanations suitable for a wide range of layperson users (Feldhus et al., 2022;18

Lakkaraju et al., 2022; Liao et al., 2020). While there is much theoretical analysis about19

the significance of conversations in explainability, practical investigations into their im-20

pact on users remain limited. In this context, two previous works have investigated the21

practical effect of conversations for explainability (Shen et al., 2023; Slack et al., 2023).22

Shen et al. (2023) apply conversational explanations to scientific writing tasks, observing23

improvements in productivity and sentence quality. Slack et al. (2023) design dialogue24

systems to help users better understand machine learning models on diabetes predic-25

tion, rearrest prediction, and loan default prediction tasks. Despite these advances, the26

conversations in these studies are generated based on templates and cope with limited27

predefined user intentions. In this study, we explore the role of free-form conversations28

in enhancing users’ comprehension of static explanations, and how they affect users’ ac-29
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ceptance, trust, and collaboration with these explanations.1

Human-AI Collaboration2

Human-AI collaboration is an emerging research area, which explores how humans3

and AI systems can work together to achieve shared goals (Herse, Vitale, & Williams,4

2023; S. S. Y. Kim et al., 2023; Xu, Dainoff, Ge, & Gao, 2023). Prior studies within5

this domain have investigated collaborations between humans and various AI systems,6

from robots (Bhat, Lyons, Shi, & Yang, 2024; Carissoli, Negri, Bassi, Storm, & Fave,7

2023; Gero et al., 2020; Häuslschmid, von Bülow, Pfleging, & Butz, 2017; L. Liu, Guo,8

Zou, & Duffy, 2022) to virtual agents (Ashktorab et al., 2020; Cai et al., 2019; D’Avella,9

Camacho-Gonzalez, & Tripicchio, 2022; Numata et al., 2020). The tasks involved span a10

broad scope, including text (Bansal et al., 2021) and image (S. S. Y. Kim et al., 2023)11

classifications, medical diagnosis (Cai et al., 2019), deception detection (Lai & Tan, 2019)12

and cooperative games (Ashktorab et al., 2020; Feng & Boyd-Graber, 2019; Gero et al.,13

2020). An area of particular interest within these collaborations is the role of explanations14

in influencing human-AI decision-making (Bansal et al., 2021; Lai & Tan, 2019; Nguyen,15

Kim, & Nguyen, 2021; Nguyen et al., 2022).16

Our study aligns with existing work on human-AI collaboration (Bansal et al., 2021;17

Feng & Boyd-Graber, 2019; Lai & Tan, 2019; Nguyen et al., 2021, 2022). In our work,18

participants need to collaborate with explanations to choose the most accurate neural19

networks among others. Instead of exploring the role of explanations in collaboration, we20

mainly examine the potential of conversations in aiding users to effectively use explain-21

ability techniques and understand their outputs.22

Method23

Our study aims to investigate the impact of conversations on the explainability of24

AI models by observing participants’ comprehension, acceptance, trust of the static ex-25

planations, and ability to use the explanations to select the most accurate neural networks26

before and after the conversation. Our study has received approval from the Institutional27

Review Board at Nanyang Technological University (#IRB-2023-254).28



12

TABLE 1: Academic disciplines of our participants and the number of

participants in each group. There are 120 participants from 4 different

discipline groups.

Academic Discipline Number of Participants

Business 23

Engineering 16

Humanities 55

Science 26

Participants1

A total of 120 participants joined our study. All were 21 years old or older, fluent in2

English, and had not been involved in research about XAI previously. We recruited our3

participants in two ways: by posting advertisements on an online forum and by emailing4

students and staff across various departments and schools. They are from a wide range5

of disciplines to promote diversity. For ease of reporting, we categorize their disciplines6

into four groups:7

• Business, including Business and Accountancy.8

• Engineering, including Civil and Environmental Engineering, Computer Science,9

Electrical and Electronics Engineering, Maritime Studies, and Food Science.10

• Humanities, including Psychology, Economics, Communication Studies, Linguistics11

and Multilingual Studies, and Sociology.12

• Science, including Biology, Chemistry, Chemical Engineering and Biotechnology,13

Sport Science & Management, Mathematics, Medicine, and Physics.14

Table 1 shows statistics of the academic disciplines that the participants enrolled in.15
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(a) Input to the classification

model (Swin Transformer)

(b) Explanation generated by

Grad-CAM

(c) Explanation generated by

LIME

Figure 1 . Example explanations generated by Grad-CAM and LIME. (a) is the input to

the classification model (Swin Transformer), (b) is the explanation generated by

Grad-CAM, and (c) is the explanation generated by LIME. The predicted class of the

model is "Siamese cat".

Experimental Task1

In our study, we focus on the image classification task on the ImageNet dataset2

(Deng et al., 2009). Image classification task is a cornerstone in the field of computer vi-3

sion (CV) that has been the subject of various human-AI collaborative studies (Jeyakumar4

et al., 2020; Taesiri, Nguyen, & Nguyen, 2022). We train three classification models with5

different top-1 classification accuracies: Swin Transformer (Z. Liu et al., 2021) (84.1%),6

VGG-16 (Simonyan & Zisserman, 2015) (71.6%), and AlexNet (Krizhevsky, Sutskever,7

& Hinton, 2012) (56.5%). To generate explanations for model predictions, we select two8

explanation techniques from two main categories of feature attribution explanation meth-9

ods: LIME (Ribeiro et al., 2016) (a surrogate method) and Grad-CAM (Selvaraju et al.,10

2017) (a gradient-based method). We focus on feature attribution explanations as we11

believe the relationship between input features and model predictions is more intuitive to12

understand than example-based methods for laypeople (S. S. Y. Kim et al., 2023). Figure13

1 displays example explanations generated by these two explanation methods.14

To conduct the study, we design and build a web-based platform where partici-15

pants can remotely finish the whole procedure of the experiment. After users log into the16
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Figure 2 . An example of the objective evaluation. The objective evaluation aims to

objectively measure participants’ comprehension of static explanations. Each choice

contains a prediction from a different classification model, paired with its respective

static explanation. Participants need to choose the best model based on the

explanations.

platform, we first evaluate their objective and subjective understanding of static explana-1

tions. The objective explanations require participants to choose, from three classification2

models, the most accurate on unobserved test data. The three classification models yield3

identical decisions on 5 images. The only differences between the three networks lie in4

their explanations. Hence, to select the best model, the participants must rely on the5

explanations. Figure 2 presents an example question, including the original image, the6

model outputs, and the explanations. The full set of questions used in the study can be7

found in Appendix A.8
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TABLE 2: Detailed questions in the subjective evaluation. The user will

respond to each question using a 7-point Likert scale.

Aspect Question

Comprehension How much do you think you understand the explanations provided for

predictions of deep learning models?

Perceived

Usefulness

Using explanations would improve my understanding of deep learning

models’ predictions.

Using explanations would enhance my effectiveness in understanding pre-

dictions of deep learning models.

I would find explanations useful in understanding predictions of deep

learning models.

Perceived

Ease-of-Use

I become confused when I use the explanation information.

It is easy to use explanation information to understand predictions of

deep learning models.

Overall, I would find explanation information easy to use.

Behavioral

Intention

I would prefer getting explanation information as long as it is available

when getting predictions from deep learning models.

I would recommend others use explanation information to understand

predictions of deep learning models.

Trust

How would you rate the competence of the explanation method? - i.e. to

what extent does the explanation method perform its function properly?

How would you rate the dependability of the explanation method? -

i.e. to what extent can you count on the explanation method to explain

predictions of deep learning models?

How would you rate your degree of faith that the explanation method

will be able to explain predictions of deep learning models in the future?

How would you rate your overall trust in the explanation method?

The subjective evaluation measures participants’ self-reported perception of the1

static explanations, including their comprehension (Cheng et al., 2019; Hoffman, Mueller,2
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Figure 3 . The web page where users can discuss static explanations with an expert.

Klein, & Litman, 2018), acceptance (Davis, 1989; Davis, Bagozzi, & Warshaw, 1989; Diop,1

Zhao, & Duy, 2019; Flathmann et al., 2023), and trust (Davis, 1989; Davis et al., 1989;2

Diop et al., 2019; Guo, Yang, & Shi, 2023; X. J. Yang, Unhelkar, Li, & Shah, 2017).3

Based on an in-depth review of existing literature, we chose the questions from those4

that have been validated in prior research. The subjective evaluation contains a total5

of 13 questions, each utilizing a 7-point Likert scale for responses. Table 2 lists all the6

questions we used. Labels of the 7-point Likert scale are listed in Appendix A.7

After these two evaluations, participants are divided into two groups, i.e., the con-8

trol group and the experimental group. Participants in the control group read static9

explanations for 15 minutes. Participants in the experimental group conduct conversa-10

tional explanations with participants in the Wizard-of-Oz (WoZ) setting (Kelley, 1984).11

They interact with a dialogue system that they believe to be autonomous but is actually12

operated by a human expert on machine learning.13
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To support the WoZ experiment, we built a conversation page with a two-section1

structure, as depicted in Figure 3. On the left, the page shows a task description, a2

textual description of the prediction model, a textual description of the explanation3

technique, an example input image, the model prediction on the input image, a static4

explanation for the prediction, and a textual description of the explanation. On the5

right, the interface enables users to converse with XAI experts, seeking clarifications and6

posing questions about the explanation. For the users in the control group, we replace7

the textual chat user interface with a 15-minute timer. Once the timer reaches zero, users8

are allowed to proceed to the post-evaluations. Users from both groups receive the same9

post-evaluations, which are identical to the pre-evaluations. We discuss the evaluations10

below.11

Experimental Design12

There are two independent variables and two categories of dependent variables. The13

independent variable in the experiments is the explanation method: LIME or Grad-CAM14

and the method of understanding static explanations: conversation with human experts or15

reading static explanations. As we devise both subjective and objective evaluations before16

and after conversations or readings, two categories of dependent variables were collected17

in the experiment: the model selection accuracy and the self-reported perception scores.18

Objective Evaluation – Selection of Classification Models. The evaluation19

aims to objectively evaluate participants’ understanding of the static explanations. Par-20

ticipants are presented with 5 input images, on which the three neural networks make the21

same decisions. The only differences between the three networks lie in their explanations.22

Participants need to choose the one that would be the most accurate on unobserved test23

data. Hence, to make the correct selection, the participants must understand the ex-24

planations. We use the accuracy of selecting the correct model to measure participants’25

objective understanding of static explanations.26

We recognize that existing explanation techniques are not always faithful to the un-27

derlying model (Adebayo et al., 2018; Jacovi & Goldberg, 2020; Kindermans et al., 2019)28
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and do not always provide actionable information for model selection. As our goal is to1

test if the users can understand the static explanations when they do provide actionable2

information, rather than evaluating the static explanations themselves, we selected in-3

put images where better classification models indeed have more reasonable and intuitive4

explanations. This approach allows users to easily pick the best classification models if5

they understand the static explanations well. We deem an explanation more reasonable6

when it focuses more on discriminative features that are unique to the predicted class7

and less on spurious features that are irrelevant to the class. In addition, good models8

should have explanations that rely on multiple types of discriminative features. This is9

because a model relying on multiple features is robust and makes the correct decision10

even if some discriminative features are missing or occluded. In the example in Figure 2,11

Model B is better than Model A or Model C as Model B utilizes both the head and the12

body of the cat for classification. In addition, unlike Model A, Model B does not focus13

on the background, which is irrelevant to the predicted class, Siamese Cat.14

Subjective Evaluation. We also measure participants’ subjective perception of15

static explanations, including their comprehension, acceptance, and trust. The subjective16

evaluation contains a total of 13 questions listed in table 2. All questions utilize a 7-point17

Likert scale for responses.18

• Comprehension (Cheng et al., 2019; Hoffman et al., 2018): Participants’ subjective19

perceptions of their understanding of explanations. It complements the objective20

evaluation, providing a holistic perspective on participants’ understanding of static21

explanations.22

• Perceived Usefulness (Davis, 1989; Davis et al., 1989; Diop et al., 2019): The de-23

gree to which participants feel that the explanations enhance their experience with24

deep learning models. Along with perceived ease of use and behavioral intention,25

these three aspects measure participants’ acceptance of static explanations. They26

are derived from the Technology Acceptance Model (TAM) (Davis, 1989; Davis et27

al., 1989; Diop et al., 2019), a widely applied theory for understanding individual28

acceptance and usage of information systems. As the explanations are used by end-29
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users, investigating their acceptance of the explanations is very important.1

• Perceived Ease of Use (Davis, 1989; Davis et al., 1989; Diop et al., 2019): Partici-2

pants’ assessment of the simplicity and clarity of the explanations.3

• Behavioral Intention (Davis, 1989; Davis et al., 1989; Diop et al., 2019): The ten-4

dency of participants to utilize the explanation information in the future.5

• Trust (Bach, Khan, Hallock, Beltrão, & Sousa, 2022; Muir & Moray, 1996): Par-6

ticipants’ confidence in the explanation methods keeping functioning as intended.7

Trust has been recognized as an important factor in human-AI collaboration as it8

mediates the human’s reliance on AI models, thus directly affecting the effectiveness9

of the human-AI team (Doshi-Velez & Kim, 2017; Seaborn, Miyake, Pennefather, &10

Otake-Matsuura, 2021; Sebo et al., 2020; Silva, Schrum, Hedlund-Botti, Gopalan,11

& Gombolay, 2023; Vorm & Combs, 2022).12

The literature demonstrated that static explanations have inconsistent effects on13

users’ trust in AI systems. On one hand, several studies have demonstrated that14

detailed explanations (Glass, McGuinness, & Wolverton, 2008; Ha & Kim, 2023;15

Silva et al., 2023), contrastive explanations (Larasati, Liddo, & Motta, 2020), and16

example-based explanations (F. Yang, Huang, Scholtz, & Arendt, 2020) can enhance17

user trust in systems. On the other hand, studies showed that static explanations18

do not have strong effects on user trust in AI systems (Cheng et al., 2019; Kunkel,19

Donkers, Michael, Barbu, & Ziegler, 2019; Wang & Yin, 2021; Y. Zhang et al.,20

2020).21

One main reason for these inconsistent reports is that trust is mediated by the22

users’ understanding of the static explanations (Kunkel et al., 2019; Wang & Yin,23

2021; Y. Zhang et al., 2020), and such understanding is often absent. According24

to theories of trust (Hoffman et al., 2018; Lim, Dey, & Avrahami, 2009; McKnight,25

Cummings, & Chervany, 1998), the ability to build a mental model of AI systems26

is the key for user trust in AI. Unsurprisingly, studies on the effects of static expla-27

nations for laypersons show that users with limited knowledge of machine learning28
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struggle to understand static explanations and the decision-making processes they1

are supposed to explain. Consequently, these users do not exhibit increased trust2

in AI systems after receiving static explanations (Wang & Yin, 2021; Y. Zhang et3

al., 2020).4

With this paper, we quantitatively investigate whether customized conversations5

about static model explanations can enhance user understanding and improve trust.6

The conversational approach toward explanations has been advocated by previous7

studies (Feldhus et al., 2022; Glass et al., 2008; Lakkaraju et al., 2022; Pieters, 2011;8

Schaffer, O’Donovan, Michaelis, Raglin, & Höllerer, 2019) but never experimentally9

verified. For example, through interviews with decision-makers, Lakkaraju et al.10

(2022) found that decision-makers strongly prefer conversational explanations that11

allow them to ask follow-up questions.12

Detailed Study Procedure13

Before participation, individuals are required to sign an informed consent form that14

outlines the objectives and procedures of the study. The form also clarifies compensation15

details and assures both the anonymity and confidentiality of data collected during the16

study. Upon signing the consent, participants receive an email that guides them to access17

the study platform.18

After logging in, a pop-up prompt provides an overview of the tasks ahead. Par-19

ticipants then complete pre-experiment objective and subjective evaluations of the static20

explanations. The objective evaluation measures participants’ understanding of static ex-21

planations by letting them choose, from three classification models, the most accurate on22

unobserved test data. There are 5 explanation examples in the objective evaluation. The23

subjective evaluation, with 13 self-reporting questions, probes the perceived comprehen-24

sion, acceptance, and trust towards the static explanations. Following these evaluations,25

participants in the experimental group engage in a WoZ discussion about static expla-26

nations. During the conversation, one example image is displayed on the screen. The27

example image is different from those used in the evaluations; however, the explanation28
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methods remain the same. Participants are motivated to understand the explanations1

as they need to select the best-performing classification model using explanations only2

when doing objective evaluation. Our XAI experts faithfully answer the user’s questions3

based on their knowledge, trying to help the user gradually understand the explanation.4

For participants in the control group, they read the static explanation for 15 minutes5

which is the average conversation time of the experimental group. After the conversation6

or 15-minute reading, participants complete the same set of evaluations as before. All7

evaluation outcomes and conversation records are documented. Upon study completion,8

each participant receives a $10 reward.9

TABLE 3: Results of the experimental group before and after

conversations, and the control group before and after 15-minute

reading. Each score is presented as mean ± standard deviation and the

change δ before and after. ∗ p < 0.001

Explanation

Methods
Group

Evaluation

Timing

Objective

Understanding

(Decision-Making

Accuracy)

Subjective

Understanding

Perceived

Usefulness

Perceived

Ease of Use

Behavioral

Intention
Trust

LIME

experimental
before 0.38 ± 0.20 4.03 ± 1.35 5.09 ± 1.07 4.48 ± 0.94 5.25 ± 0.95 4.15 ± 0.88

after 0.53∗ ± 0.16 5.30∗ ± 0.88 5.92∗ ± 0.66 5.28∗ ± 0.84 5.83∗ ± 0.81 4.92∗ ± 0.73

control
before 0.37 ± 0.17 4.57 ± 1.43 5.67 ± 0.95 4.87 ± 1.26 5.73 ± 0.69 4.37 ± 0.90

after 0.40 ± 0.20 4.60 ± 1.16 5.33 ± 0.96 4.48 ± 1.26 5.27 ± 1.08 4.36 ± 1.05

Grad-CAM

experimental
before 0.82 ± 0.21 4.17 ± 0.91 5.49 ± 0.97 4.71 ± 0.95 5.52 ± 0.65 4.40 ± 1.00

after 0.92∗ ± 0.11 5.43∗ ± 0.97 6.12∗ ± 0.60 5.58∗ ± 0.82 6.08∗ ± 0.79 5.19∗ ± 0.80

control
before 0.81 ± 0.20 4.07 ± 1.34 5.58 ± 0.59 4.36 ± 1.15 5.45 ± 0.71 4.22 ± 0.96

after 0.79 ± 0.19 4.40 ± 1.28 5.46 ± 0.69 4.70 ± 1.21 5.33 ± 0.83 4.42 ± 0.87

Results & Discussion10

Table 3 tabulates the mean and standard deviation (SD) for all the measures. As11

explanation methods (LIME vs. Grad-CAM) and group (experimental vs. control) are12

between-subjects variables and time (before vs. after) is a within-subject variable, we13

conduct a three-way Analysis of Variance (ANOVAs).14
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Effects of explanations on objective decision accuracy and subjective measures1

Results show significant main effects of group (F (1, 116) = 5.60, p = .02), method2

(F (1, 116) = 218, p < .001) and time (F (1, 116) = 12.51, p < .001). The experimental3

group, the Grad-CAM method, and the after-conversation condition display a higher ob-4

jective decision accuracy. We also find a significant interaction effect between group and5

time (F (1, 116) = 11.3, p = .01), as displayed in the figure 4. In the participant’s initial6

decision, there were no significant differences between the experimental and control con-7

ditions. During participants’ final decision, those who interact with the XAI expert (i.e.,8

experimental condition) have better decision accuracy. This phenomenon highlights the9

effectiveness of conversational explanations in enhancing the objective understanding of10

static explanations of users.11

Figure 4 . Objective decision accuracy for different groups before and after conditions.

We observe varied objective performance between LIME and Grad-CAM (F (1, 116) =12

218, p < .001). Grad-CAM has a higher accuracy of objective decision accuracy compared13

to LIME. A potential reason might be the inherently intuitive nature of the explanations14

produced by Grad-CAM compared to LIME.15
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(a) LIME (b) Grad-CAM

Figure 5 . Subjective understanding score for (a) LIME and (b) Grad-CAM before and

after conditions.

In terms of participants’ subjective understanding, we find a significant main effect1

of the evaluation timing (F (1, 116) = 4.08, p < .001). Participants receiving conversa-2

tional explanations have a significantly larger improvement in subjective understanding.3

We also observe a significant interaction effect between group and time (F (1, 116) =4

37.3, p < .001), shown in figure 5. Initially, there is no significant difference in the partic-5

ipants’ self-reported understanding of static explanations between the experimental and6

control groups. After the conditions, participants in the experimental group demonstrate7

a higher self-report understanding compared to those in the control group.8

The main effect of the explanation method (F (1, 116) = .72, p = .40) is not signif-9

icant for participants’ subjective understanding, contrasting with its effect on objective10

understanding. Even though participants can intuitively choose the best classification11

model based on the heatmap in the objective evaluation, participants’ initial self-reporting12

understanding score of Grad-CAM is just slightly larger than 4 (average understanding).13

This shows that participants still feel confused about how Grad-CAM works and how it ex-14

plains models’ predictions, even though they can perform well in the objective evaluation.15

This also demonstrates that subjective and objective evaluations measure participants’16

understanding of static explanations from complementary aspects. Self-reporting scores17

can be influenced by personal biases, while the objective evaluation might not capture18
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users’ feelings about understanding. Combining both methods can provide a comprehen-1

sive view of participants’ understanding of static explanations.2

(a) LIME (b) Grad-CAM

Figure 6 . Participants’ self-report usefulness score for (a) LIME and (b) Grad-CAM

before and after conditions.

For the perceived usefulness, results show a significant main effect of time (F (1, 116) =3

14.6, p < .001), as well as a significant interaction effect between group and time (F (1, 116) =4

52.9, p < .001), as depicted in figure 6. The experiment group (i.e., receiving conversa-5

tional explanation) results in a larger increment of perceived usefulness. For the control6

group, the Grad-CAM method increases perceived ease of use when participants are given7

more time to view the static explanation. However, a reversed trend is observed for the8

LIME method in the control group – the perceived ease of use drops after additional time9

is provided.10

Similar results are observed for participants’ perceived ease of use. There are sig-11

nificant main effects of group (F (1, 116) = 5.19, p = .002) and of time (F (1, 116) =12

30.3, p < .001), as well as a significant interaction effect between group and time13

(F (1, 116) = 33.7, p < .001). The perceived ease of use increases largely for the experi-14

ment group after interacting with XAI experts. For the control group, the Grad-CAM15

method increases perceived ease of use while LIME methods decrease it when giving par-16

ticipants more time to view the static explanation.17

For the behavioral intention, results show a significant main effect of the time18
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(a) LIME (b) Grad-CAM

Figure 7 . Participants’ self-report ease of use score for (a) LIME and (b) Grad-CAM

before and after conditions.

(a) LIME (b) Grad-CAM

Figure 8 . Participants’ self-report behavioral intention score for (a) LIME and (b)

Grad-CAM before and after conditions.

(F (1, 116) = 3.92, p = .005) and a significant interaction effect between group and time1

(F (1, 116) = 3.92, p < .001) as shown in figure 8. Participants increase their behavioral2

intention and are more inclined to use explanations in future scenarios after receiving3

conversational explanations. On the contrary, the behavioral intention of the control4

group decrease for both Grad-CAM and LIME.5

The boost in usefulness, ease of use, and behavioral intention for the experimental6
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group can be attributed to the increased understanding of static explanations. Prior1

to the expert interactions, participants might have had limited knowledge or even mis-2

conceptions about the explanation methods. Experiment results show that participants3

gain a clearer understanding of how the XAI methods function, after the participants’4

questions are addressed in the conversations. Consequently, they report perceiving the5

static explanations as more useful and easier to use, and report higher inclination to use6

the static explanations in future tasks.7

The perceived usefulness, ease of use, and behavioral intention of the control group8

all decrease after reading static explanations for a longer time. This trend suggests a9

decreased willingness to utilize explanations in future scenarios. The reluctance may be10

attributed to the frustration the control group faced in attempting to comprehend the11

static explanations on their own. Research by Carolin Ebermann and Weibelzahl (2023)12

on the impact of cognitive fit and misfit in the acceptance of AI system usage highlights13

this phenomenon. They found that users experiencing a cognitive misfit with the AI14

system often report negative moods, which in turn, reduce their perceived usefulness, ease15

of use, and behavioral intention of the AI systems. The contrary results of the control16

group and the experimental group also underscore the importance and effectiveness of17

conversations in enhancing user behavioral intentions of static explanations.18

(a) LIME (b) Grad-CAM

Figure 9 . Participants’ trust for (a) LIME and (b) Grad-CAM before and after

conditions.
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For the trust, results show significant main effects of group (F (1, 116) = 4.31,1

p = .04) and time (F (1, 116) = 70.0, p < .001). The experimental group and the after2

condition display a higher trust score of participants. We also find a significant interaction3

effect between group and time (F (1, 116) = 43.7, p < .001), as displayed in the figure 9.4

Initially, there were no significant differences in trust scores between the experimental5

and control conditions. During participants’ final decision, those who interact with the6

XAI expert (i.e., experimental condition) report a higher trust score. The enhancements7

of the experimental group, contrasted with the unchanged trust score of the control8

group indicate that informativeness and clarity through conversations can help static9

explanations gain more trust from users. While there exist numerous studies on how10

explanations of AI predictions can influence users’ trust in AI predictions (Cheng et al.,11

2019; S. S. Y. Kim et al., 2023; Kunkel et al., 2019; Ma et al., 2023; Yu, Berkovsky, Taib,12

Zhou, & Chen, 2019; Y. Zhang et al., 2020), to our knowledge, this is the first experiment13

designed explicitly to gauge the impact of conversations on enhancing participants’ trust14

in explanations.15

Analysis of Collected Conversations16

We collect 60 free-form conversations between XAI experts and participants from 417

different discipline groups. On average, each conversation had 27.4 turns, with each turn18

comprising approximately 14.4 tokens. By analyzing the users’ questions, we divide them19

into six categories:20

• Basic concepts in machine learning: Questions about basic terms and concepts in21

machine learning that lay people may not know, e.g., what is a deep learning model,22

what is accuracy, the model structure, and the training data, etc.23

• Application and performance of machine learning models: Questions about the24

ability, accuracy, and limitations of machine learning.25

• Diagram reading: Questions about the explanation diagram generated by Grad-26

CAM or LIME, e.g., what different colors represent in the heatmap.27
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• Basic concepts in explainable AI: Questions about basic concepts of explanation1

methods, e.g., what are explanation methods?2

• Mechanism of explanation methods: Questions about how explanation methods3

work and how the provided explanation is generated.4

• Other explanations: Questions that require the generation of other types of expla-5

nations on the current predictions, explanations for different predictions, or com-6

parisons between the provided explanation and other explanation methods.7

Based on this categorization, we build a repository for questions that could occur8

in the conversations. In total, we collected 397 questions from the four different cat-9

egories. Table 4 contains examples and the number of questions in each category. As10

observed in Table 4, the questions of participants mainly revolve around basic concepts in11

machine learning, the fundamentals of explanation methods, and their underlying mech-12

anisms. This trend might be attributed to the multi-disciplinarity of the participants.13

It suggests that many participants may not be familiar with machine learning models14

and explanation methods, which is aligned with the real application of explanation meth-15

ods. Therefore, it’s crucial to tailor responses to these questions to help users better16

understand explanations. Furthermore, we note a marked interest in new explanations.17

This could indicate that as users become more familiar with provided explanation ex-18

amples, they exhibit curiosity about alternative explanation methods and how models19

might behave under specific scenarios. Concurrently, the diagram reading category con-20

tains only 16 questions, implying that explanations generated by Grad-CAM and LIME21

were relatively straightforward and easy to understand. The diverse range of questions22

sourced from our conversations underscores that static, one-off explanations are often23

insufficient for users to understand them. Engaging in dialogue can provide more dy-24

namic and tailored explanations to users, hence deepening their understanding of static25

explanations.26

Having well internalized their knowledge, experts are often unable to estimate what27

laypeople know (Wittwer et al., 2008). This phenomenon is also referred to as the “curse of28
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knowledge” (Camerer, Loewenstein, & Weber, 1989). As a result, experts tend to overlook1

potential areas of confusion or make unwarranted assumptions about what is “common2

knowledge”. While analyzing the collected conversations, we often find ourselves unable3

to anticipate the user questions, which corroborates the literature. We describe a few4

examples below.5

Several participants misunderstood the idea of the heatmap produced by Grad-6

CAM as depicting literal heat dissipating from objects. They infer that the model uses7

the temperature of objects to perform classification. In reality, a heatmap is just a8

metaphor that visualizes numerical values distributed spatially, which refers to the feature9

importance in our case. This misconception leads to questions about how the heat of10

objects is measured and why non-living objects are warmer than their environment. Some11

example utterances from participants include: “So the Grad-cam method basically just12

refers to the usage of generating a heatmap to capture living matters correct? ... based13

on the parts of the image that generate more heat?” –P36, “basically using heat to predict14

what is the input right?...how will we know what is the animal or input simply based on15

heat?” – P47, “if these are pictures, how do they figure out the heat since the animal isn’t16

generating heat” – P49, “So a heat sensor is not required? A heatmap is automatically17

generated from each photo and analyzed using the model.” – P52.18

A second common misconception is the conflation between the post-hoc explanation19

technique and the classification models. Some example user questions include: “is the20

explanation method what the model uses to classify & predict what the image is supposed21

to be?” – P6, “Swin transformer uses LIME model? ... what are the differences between22

lime model and Swin transformer?” – P8. Furthermore, participants face challenges in23

understanding certain terms commonly used in AI and XAI, even though these terms are24

frequently used and understood within academic communities. Many participants asked25

questions about basic concepts in machine learning, such as: “what is the explanation26

method?” – P7, “how do you classify the image?” – P17, “what is the algorithm? does it27

mean lime? what are deep neural networks?” – P32, “How would you explain the term28

"perturbations of images" to a five-year-old?” – P46.29
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The observations from the interactions between XAI experts and layperson users1

demonstrate the importance of conversations for users to understand static explanations2

as they bridge the knowledge gap between the two groups. Conversations can reveal the3

specific areas of misunderstanding, such as incorrect implicit assumptions the users make4

and knowledge they lack. Hence, conversational explanations may help the AI system5

communicate with and bring genuine understanding to the users.6
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TABLE 4: Overview of Collected Questions. Including categories of

questions, examples, and the count of questions in each category.

Question

Category
Question Examples Num

Basic concepts

in machine

learning

• What is a deep learning model?

• What is the image classification task?

• How does the model know what features to extract?

85

Application,

performance,

and limitations

of machine

learning models

• How about the precision of the classification model?

• Where has this Swin Transformer classification method been used in

practical applications?

• Will the different species of an animal affect the classification model

categorizing the animal?

68

Diagram

reading

• Are regions colored in red areas that have been identified as containing

key features for the animal?

• What are the yellow line spots for (in LIME explanations)?

• What do the red and blue colors mean (in Grad-CAM explanations)?

16

Basic concepts

of explanation

methods

• What is the explanation model used for?

• Can LIME be used without the internet?

• What are some limitations of the Grad-CAM (LIME) method?

95

Mechanism of

explanation

methods

• Why does the (LIME) explanation not highlight all the parts of the

leopard?

• How LIME model recognize the most important parts for the model

prediction?

• Seems like the Classification Model and the Explanation Model are

trained separately - how can we be sure that the underlying logic of

making a prediction is the same for both models?

91

Other

explanations

• Can you list other visualization methods?

• Is there anything special about the Grad-CAM (or LIME) method that

is different from others?

• What if there are both fishes and humans in an image? How should

this image be classified, and can you provide such explanations?

42
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Implications for building dialogue systems to explain static explanations1

Our study indicates the impact of conversational explanations on user comprehen-2

sion, acceptance, and trust of static explanations. Static explanations, while informative,3

may not cater to users with varied backgrounds and expertise. Engaging in conversational4

explanations provides a dynamic and interactive medium for users to seek clarifications,5

ask questions, and thereby facilitate a deeper and more personalized understanding.6

The emergence of advanced conversational agents (Ni et al., 2023; Shuster et al.,7

2022; T. Zhang et al., 2022), especially knowledge-based question-answering (Lan et al.,8

2021; M. Luo et al., 2023; L. Zhang et al., 2023) powered by large language models9

(Ouyang et al., 2022; Touvron et al., 2023; Zhao et al., 2023) paves the way toward10

conversational agents that can explain model decisions and discuss static explanations.11

Our study suggests the following desiderata for such agents.12

• Extensive knowledge of AI and XAI. As observed in our study, a large portion of13

user questions are related to core concepts of machine learning models and ex-14

planation methods. To answer those questions, conversational agents need to be15

trained on a comprehensive corpus encompassing AI and XAI concepts. Besides,16

in our study, participants also are curious about the applications, performances,17

and limitations of machine learning models and explanation methods. Therefore,18

besides answering abstract questions, dialogue systems also should relate them to19

real-world applications and limitations.20

• Capability to generate new explanations as needed. As an improved understand-21

ing of the provided explanations, participants in our study exhibit curiosity about22

alternative explanation methods and explaining different predictions. Dialogue sys-23

tems should provide new explanations to users when requested. For instance, if a24

user is curious about how changing a feature would affect the model output, the25

system should generate a new explanation with the new feature, which showcases26

the effect.27

• Capability to interpret scientific diagrams and visualizations. A significant portion28
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of AI and XAI explanations often comes in the form of diagrams (Ribeiro et al.,1

2016; Selvaraju et al., 2017), such as heatmaps or feature importance visualiza-2

tions. Our study reveals that users have questions related to understanding these3

diagrams. Answering these questions usually requires an understanding of specific4

regions of the diagrams, such as answering what parts of the object are highlighted5

by the yellow line in LIME explanations. Therefore, future dialogue systems should6

have visual processing capabilities, understanding and interpreting diagrams con-7

textually. For instance, they should be able to recognize colors, patterns, and other8

graphical elements in heatmaps or charts and relate them to users’ questions. The9

recent development in multimodal large language models (Driess et al., 2023; Gong10

et al., 2023; Zhu, Chen, Shen, Li, & Elhoseiny, 2023) is a promising direction to11

achieve this goal.12

Limitations13

Despite the insights gained, there are several limitations that should be acknowl-14

edged. First, the static explanations used in our study are limited. Our experiments15

focused on feature attribution explanation methods. The applicability of our findings16

to other explanation methods, such as example-based explanation methods, remains an17

open question. Second, as our main objective was to discern the effects of free-form con-18

versational explanations, we did not delve into the comparative performance of different19

explanation methods. In our experiments, we intentionally selected explanation exam-20

ples where the best classification model yielded the most reasonable explanations. The21

explanation examples discussed by participants and XAI experts were chosen such that22

they reasonably explain the predictions of the classification model. Future work would be23

to extend these conversations to include explanations that might be less reliable. Third,24

we explore how conversations foster user trust in explanations in our study. Nevertheless,25

previous studies (Ha & Kim, 2023; Wang & Yin, 2021; Y. Zhang et al., 2020) have shown26

that humans may trust AI models even if they make wrong decisions. We do not explore27

whether users’ trust in our study is misplaced, which we leave for future work. Fourth,28

we use AI to classify the images. Previous studies (Bankins, Formosa, Griep, & Richards,29
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2022; Formosa, Rogers, Griep, Bankins, & Richards, 2022) found that participants favor1

humans over AI decision-makers when their decisions directly affect participant welfare.2

In our study, AI decisions do not directly affect participant welfare. We also did not3

investigate if the participants preferred conversations with humans or AI chatbots or if4

their trust in the explanations was affected by that variable. Finally, our research is con-5

fined to one geographical region and includes only students and staff from the university.6

Factors such as cultural backgrounds and age-related differences could potentially influ-7

ence user interactions with XAI and how they seek to clarify confusion. Future studies8

could involve recruiting participants from diverse countries, regions, and age groups.9

Conclusion10

In our work, we conduct Wizard-of-Oz experiments to investigate how free-form11

conversations assist users in understanding static explanations, promoting trust, and12

making informed decisions about AI models. Participants engage in conversational ex-13

planations with XAI experts to understand how the provided static explanation explains14

the model decision. To evaluate the effects of conversations, we design objective and15

subjective measurements. We observe a notable improvement in users’ comprehension,16

acceptance, trust, and collaboration after conversations. From collected conversations,17

we find that participants’ questions and confusions are diverse and unanticipated. Our18

findings advocate for the integration of dialogue systems in future XAI designs to ensure19

more personalized explanations.20
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Appendix

Objective Evaluation – Selection of classification models.

The evaluation aims to objectively evaluate participants’ understanding of static1

explanations. We ask participants to choose, from three classification models, the most2

accurate on unobserved test data. All three classification models make the same decisions3

on 5 images, accompanied by static explanations from the same explanation method. The4

only differences between the three networks lie in their explanations. Hence, to make the5

correct selection, the participants must understand the explanations.6

Figure A1 presents the full set of images listed in the objective evaluation for Grad-7

CAM, while Figure A2 showcases the same for LIME.8
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Questionnaire Description
The questionnaire consists of questions that each offer three choices. Each choice contains an input image, the prediction from a

deep learning model for that input, and an explanation of how the model arrived at its prediction. The deep learning model is

designed to classify images into specific categories, such as Goldfish or Siberian Husky. 

It is important to note that while the deep learning models in different choices have differing levels of accuracy, the explanation

method remains consistent. 

Your responsibility is to assess and compare the explanations provided for different deep learning models and choose the deep

learning model that you believe best explains its prediction. 

We greatly value your participation, and please rest assured that all responses will be kept anonymous and confidential.

Question 1

Question 2

Questionnaire 1

Model's input

Model output

Siberian husky

Explanation for the model prediction

Choice A

Model's input

Model output

Siberian husky

Explanation for the model prediction

Choice B

Model's input

Model output

Siberian husky

Explanation for the model prediction

Choice C

Model's input

Model output

Goldfish

Choice A

Model's input

Model output

Goldfish

Choice B

Model's input

Model output

Goldfish

Choice C

Figure A1 . Objective evaluation questions used for Grad-CAM.
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Question 3

Question 4

Explanation for the model prediction Explanation for the model prediction Explanation for the model prediction

Model's input

Model output

Leopard

Explanation for the model prediction

Choice A

Model's input

Model output

Leopard

Explanation for the model prediction

Choice B

Model's input

Model output

Leopard

Explanation for the model prediction

Choice C

Model's input

Model output

Bee

Explanation for the model prediction

Choice A

Model's input

Model output

Bee

Explanation for the model prediction

Choice B

Model's input

Model output

Bee

Explanation for the model prediction

Choice C

Figure A1 . Objective evaluation questions used for Grad-CAM.
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Question 5

Submit Cancel

Model's input

Model output

Siamese cat

Explanation for the model prediction

Choice A

Model's input

Model output

Siamese cat

Explanation for the model prediction

Choice B

Model's input

Model output

Siamese cat

Explanation for the model prediction

Choice C

Figure A1 . Objective evaluation questions used for Grad-CAM.
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Questionnaire Description
The questionnaire consists of questions that each offer three choices. Each choice contains an input image, the prediction from a

deep learning model for that input, and an explanation of how the model arrived at its prediction. The deep learning model is

designed to classify images into specific categories, such as Goldfish or Siberian Husky. 

It is important to note that while the deep learning models in different choices have differing levels of accuracy, the explanation

method remains consistent. 

Your responsibility is to assess and compare the explanations provided for different deep learning models and choose the deep

learning model that you believe best explains its prediction. 

We greatly value your participation, and please rest assured that all responses will be kept anonymous and confidential.

Question 1

Question 2

Pre Questionnaire 1

Model's input

Model output

Siberian husky

Explanation for the model prediction

Choice A

Model's input

Model output

Siberian husky

Explanation for the model prediction

Choice B

Model's input

Model output

Siberian husky

Explanation for the model prediction

Choice C

Model's input

Model output

Goldfish

Choice A

Model's input

Model output

Goldfish

Choice B

Model's input

Model output

Goldfish

Choice C

Figure A2 . Objective evaluation questions used for LIME.
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Question 3

Question 4

Explanation for the model prediction Explanation for the model prediction Explanation for the model prediction

Model's input

Model output

Leopard

Explanation for the model prediction

Choice A

Model's input

Model output

Leopard

Explanation for the model prediction

Choice B

Model's input

Model output

Leopard

Explanation for the model prediction

Choice C

Model's input

Model output

Bee

Explanation for the model prediction

Choice A

Model's input

Model output

Bee

Explanation for the model prediction

Choice B

Model's input

Model output

Bee

Explanation for the model prediction

Choice C

Figure A2 . Objective evaluation questions used for LIME.
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Question 5

Submit Cancel

Model's input

Model output

Siamese cat

Explanation for the model prediction

Choice A

Model's input

Model output

Siamese cat

Explanation for the model prediction

Choice B

Model's input

Model output

Siamese cat

Explanation for the model prediction

Choice C

Figure A2 . Objective evaluation questions used for LIME.
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