
Deep Static and Dynamic Level Analysis: A Study on Infinite Mario

Matthew Guzdial1,3, Nathan Sturtevant2, and Boyang Li3
1School of Interactive Computing, Georgia Institute of Technology

2Computer Science Department, University of Denver
3Disney Research

mguzdial@gatech.edu, sturtevant@cs.du.edu, albert.li@disneyresearch.com

Abstract

Automatic analysis of game levels can provide as-
sistance to game designers and procedural content
generation. We introduce a static-dynamic scale to
categorize level analysis strategies, which captures the
extent that the analysis depends on player simulation.
Due to its ability to automatically learn intermediate
representations for the task, a convolutional neural
network (CNN) provides a general tool for both types
of analysis. In this paper, we explore the use of CNN to
analyze 1,437 Infinite Mario levels. We further propose
a deep reinforcement learning technique for dynamic
analysis, which allows the simulated player to pay a
penalty to reduce error in its control. We empirically
demonstrate the effectiveness of our techniques and
complementarity of dynamic and static analysis.

Introduction
For many modern games, well-designed levels are at the
core of a fun experience and player retainment. As games
can contain hundreds of levels1, evaluating all game levels
with user studies can become very expensive. Therefore,
the ability to automatically evaluate a game level along
multiple design criteria, such as difficulty (Pedersen, To-
gelius, and Yannakakis 2009a), enjoyment (Sweetser and
Wyeth 2005a) and aesthetics (Hunicke, LeBlanc, and Zubek
2004), becomes a useful tool for game level designers with
limited resources. The past decade has witnessed the quick
proliferation of research on this topic (e.g., Berseth et al.
2014; Tremblay et al. 2014).

We can categorize techniques for automatic game
level evaluation as a scale between static analysis and
dynamic analysis based on their reliance on simulated
players. Static analysis encompasses evaluation of level
structure without simulating gameplay. But this is not to
say static analysis is incapable of modeling gameplay or
game mechanics. For example, a regression analysis can
reveal correlation between platform shapes and difficulty,
which can be attributed to game mechanics unknown to
static analysis. In comparison, dynamic analysis relies on
simulation to determine how a player might act in a

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1In May 2016, Candy Crush Soda Saga contained 885 levels.

level. Many techniques fall between these two extremes,
such as those that rely on static features that encode
likely player behavior (e.g. counting gaps to approximate
jumps (Pedersen, Togelius, and Yannakakis 2009b)) or those
that partially simulate interaction with a level (e.g. only
movement in a first person shooter level (Shi and Crawfis
2013)).

Designing effective features for static analysis often
requires knowledge of game mechanics. For example, for
Super Mario Bros., it may be useful to differentiate between
small gaps that can be run over and large gaps that cannot.
To minimize manual coding and acquire important patterns
from data, we turn to convolutional neural networks (CNNs)
(Lang and Hinton 1988; LeCun et al. 1989), which are
capable of learning multi-level feature representations. In
this paper, we explore the use of CNNs for analyzing
the difficulty, enjoyment, and aesthetics of Infinite Mario
Bros. levels. Experiments show the CNN outperforms
traditional methods and the learned representations capture
our intuition about game difficulty.

Dynamic analysis has access to potential player in-
teractions with a level, providing additional information
for analytical purposes. Our analysis shows that a simple
A* algorithm produces information that improves our
CNN prediction, when paired with more traditional static
metrics. Nevertheless, an additional challenge arises in the
construction of artificial agents that play like humans. To
address this issue, we propose a deep reinforcement learning
agent that simulates two major aspects of human players.
First, the agent faces imprecision in its control, which forces
it to favor a safe path over a fast but risky path. Second, the
agent has a “focus” mechanism, which allows it to pay a
penalty to reduce control imprecision. The amount of focus
then becomes a surrogate for tension in the game. We leave
the evaluation of this agent for future work.

Related Work
The most common approaches for static game level analysis
are game design patterns (Bjork and Holopainen 2004)
and computational metrics (Smith, Whitehead, and Mateas
2010; Horn et al. 2014). A game design pattern refers
to a high-level, descriptive “solution” to a common game
design problem, which can be used for evaluation and
generation of content such as game levels (Hullett and



Whitehead 2010; Liapis, Yannakakis, and Togelius 2013).
Computational metrics refer to low-level, technical metrics
designed to capture level characteristics of procedurally
generated levels, historically focused on platformer game
levels.

Dahlskog and Togelius (2014) identified a set of
commonly occurring patterns from the original Super Mario
Bros. (e.g. a group of three enemies in a row), and used
these patterns to evaluate generated levels. To some extent
this work is similar to our own analysis of level aesthetics,
however they make no attempt to simulate player experience
or explicitly evaluate levels in terms of fun or difficulty.

Computational metrics have traditionally been applied
to platformer game levels, making much of the work
in the field relevant to our own (Smith, Whitehead, and
Mateas 2010; Horn et al. 2014). Canossa and Smith (2015)
present the most complete list of current computational
metrics for platform levels derived from design theory and
novice designer intuition, intended to evaluate difficulty and
aesthetics (e.g. the density and frequency of enemy clusters).
These metrics are intended to inform human or artificial
designers, and do not tend to reflect the ratings of human
players (Marino, Reis, and Lelis 2015).

Outside of both the traditional computational metrics
defined by Smith et al. (2010) and game design patterns
exists a variety of work on deriving strategies for static
analysis of game levels. Such work tends to focus upon a
single subjective feature, such as difficulty (Shi and Crawfis
2013; Tremblay et al. 2014) or aesthetics (Cook, Colton, and
Pease 2012; Cook and Smith 2015; Tremblay and Verbrugge
2015). In this paper we focus on three objectives: difficulty,
fun, and visual aesthetics, but our approach is sufficiently
general to many other subjective features due to the ability
of representation learning.

Dynamic analysis encompasses strategies for the au-
tomatic evaluation of levels based on some simulation
of player experience. Many of the modern approaches in
dynamic analysis take inspiration from the notion of game
“flow” (Sweetser and Wyeth 2005b), a notion that a player’s
growing skill at a game must be met with equivalent
challenge to maximize enjoyment. The majority of work
in dynamic analysis tends to focus on enjoyment (Togelius,
De Nardi, and Lucas 2007; Iida, Takeshita, and Yoshimura
2003) or a combination of difficulty and enjoyment (To-
gelius and Schmidhuber 2008; Cook, Colton, and Gow
2012; Bauer, Cooper, and Popovic 2013). Cook, Colton, and
Gow (2012) and Bauer, Cooper, and Popovic (2013) both
use simulated playouts in order to determine if a platformer
level matches a target difficulty, based on the reachability
and risks of level sections.

Our work explores the combination of static and
dynamic analysis in order to successfully predict the
measures of enjoyment, challenge, and aesthetics on a per-
level basis. The field of player modeling focuses on deriving
models of player behavior or preference in order to evaluate
features of a level on a per-player basis with static and
dynamic analyses (Yannakakis et al. 2013). Notably, there
exists player modeling work that shares the domain of
Super Mario Bros., where we have turned for inspiration

for some of our high-level features (Pedersen, Togelius, and
Yannakakis 2009b; Shaker, Yannakakis, and Togelius 2010).
However, due to its nature, player modeling work requires
knowledge of an individual player’s experience with a level
for its dynamic analysis, data which is difficult and time-
consuming to collect. Instead, our work draws on simulated
players to stand in for a theoretical “optimal” player.

There exists a set of prior work in the Super Mario
Bros. domain focused on modeling elements of levels with
neural networks. Summerville and Mateas (2016) make use
of a simulated player and neural network architecture, but
with a focus on level generation. While their learned model
of level design encodes an intrinsic evaluative metric, it
is based on evaluating the best level components to add
during level generation rather than high-level characteristics
such as player enjoyment. Jain et al. (2016) make use of
an autoencoder to in part look at automatically identifying
the “style” of a level, which is similar to our prediction of
aesthetics.

Static Analysis with Convolutional Networks
In this section, we predict the difficulty, enjoyment, and
aesthetics ratings of Infinite Mario Bros. levels directly from
level maps using a convolutional neural network. As we
expect, the CNN outperforms a traditional baseline and is
capable of extracting useful features for prediction. Further,
we complement the static analysis by CNN with features
extracted from an A* algorithm’s search history, which
represent a shallow dynamic analysis. The combination
yields substantial performance improvements, suggesting
complementarity of the two strategies.

Convolutional Neural Networks
Convolutional neural networks have gained massive pop-
ularity recently for processing visual information due to
their capability to learn multi-level representations that are
superior to hand-crafted features (Razavian et al. 2014). A
CNN typically contains convolution layers, pooling layers,
and fully connected layers. A convolutional layer contains
multiple filters, which are used to scan the input image from
left to right and from top to bottom. At each position of
the filter, corresponding values in the filter and the image
are multiplied and the sum of products is returned. More
formally, let a filter be a n-by-m matrix F . For an input
matrix Φc of size k × l, we have

ap,q =
∑

1≤i≤n,1≤j≤m

Fi,jΦ
c
p+i,q+j (1)

where p, q slide the filter across the input matrix and i, j
iterate over positions within the filter and corresponding
positions of the input matrix. The input then goes through
an activation function (e.g., a sigmoid) to create the output
matrix Oc:

Oc
p,q = f (ap,q) (2)

A max-pooling layer returns the maximum element
within a certain patch of the input matrix. Let Φmax and
Omax denote the input and output matrices respectively, for



Figure 1: Each sprite of an IMB level (left) is represented
by an integer in the grid (right). For example, a goomba is
represented by 79.

an n-by-n max-pooling, we have
Omax

p,q = max
1≤i≤n′,1≤j≤n′

Φmax
np+i,nq+j (3)

The height and width of the output matrix are 1/n of the
input matrix.

A fully connected layer can be expressed as a matrix
multiplication and an activation function. The input to the
fully connected layer is reshaped into a vector φ of size d.
The output vector o of size d′ is computed as

o = g(Wφ) (4)
where the d-by-d′ matrix W are the weights of this
layer and g(·) is another activation function. In order to
reduce overfitting, we make use of the dropout technique
(Srivastava et al. 2014), which randomly disables some
connections in the network for each pass. Training of a
CNN is typically performed with gradient descent and
backpropagation.

Experiments
We perform a series of experiments to explore static analysis
with convolutional neural networks and its complementarity
with dynamic analysis.

Data Our experiments rely on a dataset created by Reis
et al. (2015), which is composed of 1,437 generated
Infinite Mario Bros. (IMB) levels. Each level is tagged by
human volunteers on a nine-point Likert scale for difficulty,
enjoyment, and visual aesthetics. This is the largest dataset
on Mario-like games that we are aware of. We perform
regression to predict the reported enjoyment, aesthetics and
difficulty for each level.

We note two limitations with this data set. First, 547
levels (38% of all levels) were rated by only a single
volunteer, and the remainder are rated by anywhere from
two to eight individuals (we take the median value in this
case). Second, the levels are about a fifth as long as the
Super Mario Bros. levels, with an average size of 40 in-game
“tiles”. Despite these limitations, the size of this dataset

Table 1: Results of regression for difficulty, aesthetics, and
enjoyment from three CNN variants.

Measure Method Errors R2

Mean Median

Difficulty

CNN-Map 1.22 0.96 0.39
CNN-A* 1.28 1.05 0.35
CNN-T 1.3 1.08 0.33

CNN-All 0.92 0.72 0.64

Aesthetics

CNN 1.13 0.9 0.09
CNN-A* 1.15 0.9 0.05
CNN-T 1.18 0.92 0.04

CNN-All 1.15 0.89 0.07

Enjoyment

CNN 1.09 0.9 0.16
CNN-A* 1.11 0.91 0.14
CNN-T 1.15 0.95 0.09

CNN-All 1.04 0.85 0.22

Table 2: Results of two random forest variations for
difficulty, aesthetics, and enjoyment.

Measure Method Errors R2

Mean Median

Difficulty RF 1.11 1.0 0.42
RF-MAP 1.01 1.0 0.57

Aesthetics RF 1.41 1.0 -0.46
RF-MAP 1.15 1.0 -0.06

Enjoyment RF 1.21 1.0 -0.16
RF-MAP 1.06 1.0 0.05

makes it the most appropriate choice for training of deep
neural network models as an initial exploratory study.

As input to CNNs, an IMB level is represented as a grid
of integers, equivalent to the in-game tiles that the levels are
constructed from. Each level component is represented by
a unique integer. Figure 1 shows this representation for a
vertical slice of level.

Setup Our basic neural network (shown in Figure 2)
contains three convolutional layers with 8, 16, and 32 filters
respectively. Each convolutional layer is followed by a max-
pooling layer with a 2 × 2 field. At the end of the network,
we have one fully connected layer with an input dimension
of 448 and an output dimension of 1. The total number
of parameters in the network is 928. The rectified linear
activation function is used for convolutional layers and a
linear activation function for the fully connected layer. Our
dropout ratio is 0.5. The only input to the basic network is
the IMB level map, so it represents a pure form of static
analysis. We denote this network as CNN-Map.

To complement static analysis, we extract 4 features
from an A* agent run through each level and feed them
directly to the fully connected layer without dropout. We
call this network CNN-A*. The A* player searches for the
fastest path through a level and solves each level without
dying. From its search history, we extract the first feature:
the number of states expanded divided by the width of the



Input: 
52x14x1 52x14x8 26x8x8 26x8x16 13x4x16

Convolution
8 kernels (3x2)

Convolution 
16 kernels (3x3)

Max-Pooling 
2x2 kernel

Max-Pooling 
2x2 kernel

13x4x32

Convolution 
32 kernels (3x3)

7x2x32

Max-Pooling 
2x2 kernel

448x1

Fully Connected
Layer

Drop-Out
50%

Figure 2: A diagram of our convolutional neural network structure.

level (1). Although the agent does not die when playing the
level, during the search it may visit a state where Mario dies.
We count these deaths and differentiate between the times
of falling in a gap (2) and the number of death caused by
enemies (3). Finally, we count the number of enemies killed
during playing the game (4). Stomping on an enemy usually
slows Mario down, so A* tends to avoid it. Therefore, if
A* has to kill an enemy, it could indicate that the enemy
is in a position that is difficult to avoid. In sum, these 4
features capture, to an extent, the difficulty of the level from
simulated play traces.

In addition, we create a third network (CNN-T) that
takes in several level features that are commonly used in the
literature: the number of enemies, gaps, power-ups, cannons,
and blocks (Pedersen, Togelius, and Yannakakis 2009b;
Shaker, Yannakakis, and Togelius 2010). These features are
fed as input to the fully connected layer. This represents
a traditional “static” approach to level analysis, without
requiring any simulated play traces.

The fourth network (CNN-All) takes in all features,
including the level map and those used by CNN-A* and
CNN-T. All networks use the sum of squared error as the
loss function. Training was performed with AdaGrad (Duchi
and Singer 2011) and L2 regularization over 1200 epochs.

Lastly, for comparison with a traditional regression
technique, we build two random forest regressors. One
makes use of only the manually designed A* and level
features (denoted as RF), while the other makes use of the
manually designed features and the level map (RF-MAP).

Results Table 1 shows the results from the CNNs and
Table 2 shows the results from the random forests. We
report averages over 20 random splits with the training set
containing 80% of levels and the testing set containing 20%.
In addition to mean and median absolute errors, we also
report the coefficient of determination or R2, which is a
measure of how much variation in the data can be explained
by regression. For a number of ground truth values yi, their
mean ȳ and corresponding predictions ŷi, R2 is defined as

R2 ≡ 1− SSreg

SStot
≡ 1−

∑
i(yi − ŷi)2∑
i(yi − ȳ)2

(5)

R2 can be considered as a measure of regression quality. The
ground truth mean ȳ, computed from the test set, provides
an uninformed baseline. A large R2 indicates the regression
works significantly better than predicting ȳ. A negative R2

indicates that the regression underperforms in comparison to
the mean of the ground truth values.

Our best neural networks outperform the RF baselines
by 7 percentage points on difficulty, 15 percentage points
on aesthetics and 17 percentage points on enjoyment.
Interestingly, the A* features and the traditional level fea-
tures by themselves do not improve performance. However,
when combined, these manually designed features improve
performance on difficulty by as much as 25 percentage
points.

The random forests perform well on difficulty but
poorly on aesthetics and enjoyment. This is not unexpected
as our manual features are primarily designed for difficulty.
Contrasting to our baseline, the results suggest CNN makes
more effective use of level map data than random forest.

Discussion Across all conditions, the median errors are
better than mean error, suggesting the existence of outlier
levels which are difficult to predict. For example, with
difficulty, CNN-All’s prediction is off by five points or more
in two percent of test examples, always under-predicting the
difficulty of the levels. Given that 547 levels are rated by a
single individual, this is somewhat expected, as individuals
may have different understanding of the three criteria.

We observe that CNNs tend to have lower median
errors than random forests, but comparable mean errors.
This suggests the CNNs pick up useful patterns that appear
in most levels, and are more robust under the presence of
noisy labels. In many user studies, it is difficult to guarantee
every participant understand evaluation criteria in the same
way. Thus, robustness under noise is quite valuable.

We can explain the most data variation in difficulty
(64%), followed by enjoyment (22%) and aesthetics (only
9%). This is partially due to the fact that aesthetic and
enjoyment ratings have smaller variance than difficulty
(See Table 3). That is, aesthetic and enjoyment ratings
have smaller SStot. Another possibility is that definitions
of aesthetics and enjoyment are fuzzier than difficulty,
causing volunteers to rate the levels with different definitions



Table 3: Characteristics of the three objectives, including
variance and Spearman’s rank correlation coefficient rho.
The correlation is computed on 582 levels with two ratings.

Objective Variance rho

Difficulty 4.07 0.46

Aesthetics 2.33 0.17

Enjoyment 2.31 0.26

Figure 3: The eight level patches that maximally activate the
first eight filters of the second layer of the CNN.

in mind, creating obstacles for prediction. To verify this
hypothesis we compute Spearman’s rank correlation coeffi-
cient on the ratings of the 582 levels rated by two individuals
(shown in Table 3). We find similar trends between the
correlation of ratings and the CNN-All R2 values, with
difficulty having the highest correlation between ratings and
aesthetics having the lowest.

The relationships between different sets of features
are worth discussing. The A* features and traditional level
features by themselves do not improve performance. This
may be taken as contrary to our hypothesis that dynamic and
static analyses complement each other. However, combining
these features yields significant performance gains. Delving
deeper into the performance of CNN-All, we found the
increase arose from combining two traditional level features,
namely the number of enemies and number of gaps, with
the A* features. A CNN using the map and these 6 features
achieves a mean error of 0.93 and a median error of 0.74.
Intuitively, knowing number of deaths due to enemies and
gaps is only helpful after knowing how many enemies and
gaps exist in a level. This interesting discovery suggests that
dynamic features can indeed facilitate static analysis, but
designing correct features remains a critical issue.

Qualitative Evaluation To evaluate CNN’s ability to
extract useful features from raw map levels, we visualize the
level patches that maximally activate the learned filters for
CNN-All trained to predict difficulty. Figure 3 demonstrates
that many filters encode relationships between gaps and
enemies. Of particular interest are the last two on the
second row. The last encodes “question” blocks, which may
contain power-ups and reduce difficulty. The second last
shows a koopa under a row of coin blocks. As a koopa
occupies two tiles, the blocks prevent Mario from jumping
and stomping on the koopa, representing a challenge to the

Figure 4: Two examples of levels that are rated as the highest
difficulty, but are predicted by our system to be moderate.

Figure 5: Two examples of levels that are rated near lowest
difficulty, but are predicted by our system to be moderate.

player. These filters suggest CNN is capable of identifying
useful representations that predict the difficulty objective.

We further present examples of levels where our
prediction of difficulty failed in Figure 4 and Figure 5. It
is generally not straightforward to explain why the network
fails on individual cases, but we hypothesize that it is
partially due to the A* agent playing too well at the difficult
levels. An AI player behaving more similarly to humans may
provide some remedy.

Dynamic Analysis with Deep Reinforcement
Learning

Dynamic analysis considers the dynamics of the gameplay
and actual play traces, so it can provide insights not available
in static analysis. However, an obstacle of automatic
dynamic analysis lies in the disparity between a human
player and a simulated computational player. In this section,
we propose a deep reinforcement learning agent that plays
like human players with adjustable skill levels.

We argue that the most common challenge faced by a
player in a Mario-type game, such as platform games and
infinite runners, is not finding the correct strategy. Rather,
the challenge lies in controlling the character precisely by
pressing the right button at the right time; lack of precision



Figure 6: Two possible paths in an Infinite Mario level. An
A* player prefers the lower path (green arrow) whereas we
expect a human player to choose the upper path (red arrows)
most of the time.

often leads to harm or death. This type of control-dominant
game is in contrast to strategy-dominant games like chess
or poker. A computer player equipped with perfect control
can master a control-dominant game easily. A simple A*
algorithm is known to excel at Super Mario Bros (Togelius,
Karakovskiy, and Baumgarten 2010).

However, in order to model attributes of a game level as
perceived by human players, we need the simulated player to
play like a human. Figure 6 illustrates the difference between
a human player and an A* player. An optimal A* player, in
order to minimize the time spent in a level, takes the lower
path and evades or stomps on every enemy, since jumping
onto the platform would slow it down. In contrast, we expect
a human player who understands his or her own imperfect
control to jump on the platform to evade all enemies. We
can see a similar scenario in the top level in Figure 5, which
suggests that this disparity impacts difficulty prediction.

We propose to model such behavior by giving a
reinforcement learning (RL) agent imperfect controls, which
are captured by the agent’s actions having stochastic effects.
In order to cope with stochasticity and maximize reward,
the agent would be forced to choose a safe path over a
risky one. We formally model a control-dominant game as
a Markov Decision Process (MDP). An MDP contains a
sequence of time steps 0, 1, 2, . . .. At time t, the agent is
situated at state st and has a set of available actions A(st).
When the agent executes an action at ∈ A(st), the next
state st+1 is randomly drawn from a probability distribution
P (st+1|st, at). The agent then receives a deterministic
reward rt+1 = R(st, at, st+1). In a finite horizon setting,
the agents aims to maximize its reward

∑T
k=0 γ

krt+k+1

where γ is a discount factor between 0 and 1, and T is the
horizon. We seek a solution to an MDP as a deterministic
policy π(s) = a that maps a state to an action.

We identify timing as the main source of imprecise
control faced by human players; we consider pressing
the wrong button (e.g., pressing jump when intending for
fire/speed) to be rare. This is modeled by the stochastic
transition function P (st+1|st, at). For example, when the
jump action is executed in state s, if the player is on the
ground, there is a non-zero probability that s′ reflects the
state resulted from the player hitting jump a little earlier or a

little later. Similar imprecision is modeled for the release of
buttons.

Furthermore, we propose a technique for modeling
tension in the reinforcement learning framework. This
technique is motivated by how humans deal with stressful
situations (Rice 1999). When coping with an immediate
crisis, the human body releases epinephrine and glucocorti-
coids, as well as increases oxygen and glucose supply in the
blood, which temporarily improves performance. However,
sustained stress can damage the body and lead to multiple
health risks. The subjective feeling of tension is directly
related to high levels of epinephrine.

As a computational analogy, we introduce a “focus”
mechanism. The RL agent can choose a focus level when
executing an action. A high focus reduces the errors in the
control but also creates a negative reward, as captured by
the reward function R(st, at, st+1). This negative reward
is better than death but worse than spending a few extra
seconds in the level. To maximize its reward, the agent must
elevate its focus only when facing a situation that requires
precise control and cannot be easily evaded. As a result,
we expect the focus level throughout a game to provide a
surrogate for a tension curve, a representation of the tension
a human player feels over time as they play through a game.
In practice, the focus mechanism can can be implemented as
having multiple sets of actions, one set for each focus level.

Following Mnih et al. (2013), we propose to use a
convolutional neural network to learn a state-action value
Q(s, a) using off-policy temporal difference learning and ε-
greedy exploration. Temporal difference learning bootstraps
the learning by adjusting the network’s estimate of Q(s, a)
based on other estimates.

Conclusions
In this paper, we offer a categorization of game level analysis
as static and dynamic analysis. We identify some challenges
faced by the two classes of techniques: the design of useful
features and creating AI players similar to humans. As
a powerful function approximator, a convolutional neural
network provides some answers to both challenges. Its use
in reinforcement learning can help to create an AI player that
imitates humans players with imprecise control.

In our experiments, we utilize a CNN for the purpose
of predicting the difficulty, enjoyment, and aesthetics for
an Infinite Mario Bros. level. Our network outperforms
a strong baseline in the form of a random forest and
extracts useful intermediate features automatically. Further,
we show features extracted from play traces complement
this type of static analysis. Taken together, we present a
novel and successful approach to predicting human ratings
of gameplay experiences in platformer game levels.

Acknowledgement
The authors thank Jim McCann for valuable discussion and
Levi Lelis and Julian Hernandez for providing updated data
from the Infinite Mario Bros. user study. This paper contains
images generated by the Infinite Mario Bros. game.



References
Bauer, A. W.; Cooper, S.; and Popovic, Z. 2013. Automated
redesign of local playspace properties. In The 8th International
Conference on the Foundations of Digital Games, 190–197.
Berseth, G.; Haworth, M. B.; Kapadia, M.; and Faloutsos, P.
2014. Characterizing and optimizing game level difficulty. In
The 7th International Conference on Motion in Games, 153–
160.
Bjork, S., and Holopainen, J. 2004. Patterns in game design.
Game Development Series. Charles River Media.
Canossa, A., and Smith, G. 2015. Towards a procedural
evaluation technique: Metrics for level design. In The 10th
International Conference on the Foundations of Digital Games.
Cook, M., and Smith, G. 2015. Formalizing non-formalism:
Breaking the rules of automated game design. In The 10th
International Conference on the Foundations of Digital Games.
Cook, M.; Colton, S.; and Gow, J. 2012. Initial results from
co-operative co-evolution for automated platformer design.
In European Conference on the Applications of Evolutionary
Computation, 194–203. Springer.
Cook, M.; Colton, S.; and Pease, A. 2012. Aesthetic
considerations for automated platformer design. In The 9th
Artificial Intelligence and Interactive Digital Entertainment.
Dahlskog, S., and Togelius, J. 2014. A multi-level level
generator. In The IEEE Conference on Computational
Intelligence and Games, 1–8.
Duchi, E. H. J., and Singer, Y. 2011. Adaptive subgradient
methods for online learning and stochastic optimization. Jour-
nal of Machine Learning Research.
Horn, B.; Dahlskog, S.; Shaker, N.; Smith, G.; and Togelius, J.
2014. A comparative evaluation of procedural level generators
in the mario ai framework. In The 9th International Conference
on the Foundations of Digital Games.
Hullett, K., and Whitehead, J. 2010. Design patterns in fps
levels. In The 5th International Conference on the Foundations
of Digital Games, 78–85.
Hunicke, R.; LeBlanc, M.; and Zubek, R. 2004. MDA:
A formal approach to game design and game research. In
Challenges in Game AI Workshop at the 19th National
Conference on Artificial Intelligence.
Iida, H.; Takeshita, N.; and Yoshimura, J. 2003. A metric for
entertainment of boardgames: its implication for evolution of
chess variants. In Entertainment Computing. Springer. 65–72.
Jain, R.; Isaksen, A.; Holmgård, C.; and Togelius, J. 2016.
Autoencoders for level generation and style identification. In
The 2nd Computational Creativity and Games Workshop.
Lang, K., and Hinton, G. 1988. A time delay neural network
architecture for speech recognition. Technical Report CMUCS-
88-152.
LeCun, Y.; Boser, B.; Denker, J. S.; Henderson, D.; Howard, R.;
Hubbard, W.; and Jackel, L. 1989. Backpropagation applied to
handwritten zip code recognition. volume 1, 541–551.
Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2013. Towards a
generic method of evaluating game levels. In The 9th Artificial
Intelligence and Interactive Digital Entertainment Conference.
Marino, J. R.; Reis, W. M.; and Lelis, L. H. 2015. An empirical
evaluation of evaluation metrics of procedurally generated

mario levels. In The 11th Artificial Intelligence and Interactive
Digital Entertainment Conference.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou,
I.; Wierstra, D.; and Riedmiller, M. 2013. Playing Atari
with deep reinforcement learning. Technical report, Deepmind
Technologies. arXiv:1312.5602.
Pedersen, C.; Togelius, J.; and Yannakakis, G. N. 2009a.
Modeling player experience in super mario bros. In The IEEE
Symposium on Computational Intelligence and Games.
Pedersen, C.; Togelius, J.; and Yannakakis, G. N. 2009b.
Modeling player experience in super mario bros. In IEEE
Symposium on Computational Intelligence and Games, 132–
139.
Razavian, A. S.; Azizpour, H.; Sullivan, J.; and Carlsson, S.
2014. Cnn features off-the-shelf: An astounding baseline for
recognition. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops.
Reis, W. M. P.; Lelis, L. H. S.; and Gal, Y. 2015. Human
computation for procedural content generation in platform
games. In The IEEE Conference of Computational Intelligence
and Games, 99–106.
Rice, P. L. 1999. Stress and Health. Brooks/Cole-Wadsworth.
Shaker, N.; Yannakakis, G. N.; and Togelius, J. 2010. Towards
automatic personalized content generation for platform games.
In The 6th AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment.
Shi, Y., and Crawfis, R. 2013. Optimal cover placement against
static enemy positions. In The 8th International Conference on
the Foundations of Digital Games, 109–116.
Smith, G.; Whitehead, J.; and Mateas, M. 2010. Tanagra:
A mixed-initiative level design tool. In The 5th International
Conference on the Foundations of Digital Games, 209–216.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. The Journal of Machine Learning
Research 15(1):1929–1958.
Summerville, A., and Mateas, M. 2016. Super mario as a string:
Platformer level generation via lstms. In The 1st International
Conference of DiGRA and FDG.
Sweetser, P., and Wyeth, P. 2005a. Gameflow: A model for
evaluating player enjoyment in games. ACM Computers in
Entertainment 3(3).
Sweetser, P., and Wyeth, P. 2005b. Gameflow: a model
for evaluating player enjoyment in games. Computers in
Entertainment (CIE) 3(3):3–3.
Togelius, J., and Schmidhuber, J. 2008. An experiment
in automatic game design. In The IEEE Conference on
Computational Intelligence and Games, 111–118.
Togelius, J.; De Nardi, R.; and Lucas, S. M. 2007. Towards
automatic personalised content creation for racing games.
In The IEEE Symposium on Computational Intelligence and
Games, 252–259. IEEE.
Togelius, J.; Karakovskiy, S.; and Baumgarten, R. 2010. The
2009 mario ai competition. In IEEE Congress on Evolutionary
Computation, 1–8.
Tremblay, J., and Verbrugge, C. 2015. An algorithmic
approach to decorative content placement. In The 11th Artificial
Intelligence and Interactive Digital Entertainment Conference.



Tremblay, J.; Torres, P. A.; Brasil, B.; and Verbrugge, C. 2014.
Measuring risk in stealth games. In The 9th International
Conference on Foundations of Digital Games.
Yannakakis, G. N.; Spronck, P.; Loiacono, D.; and André, E.
2013. Player modeling. Dagstuhl Follow-Ups 6.


