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Abstract

Dense video captioning is a fine-grained video under-

standing task that involves two sub-problems: localizing

distinct events in a long video stream, and generating cap-

tions for the localized events. We propose the Joint Event

Detection and Description Network (JEDDi-Net), which

solves the dense video captioning task in an end-to-end

fashion. Our model continuously encodes the input video

stream with three-dimensional convolutional layers, pro-

poses variable-length temporal events based on pooled fea-

tures, and generates their captions. Proposal features

are extracted within each proposal segment through 3D

Segment-of-Interest pooling from shared video feature en-

coding. In order to explicitly model temporal relationships

between visual events and their captions in a single video,

we also propose a two-level hierarchical captioning mod-

ule that keeps track of context. On the large-scale Activi-

tyNet Captions dataset, JEDDi-Net demonstrates improved

results as measured by standard metrics. We also present

the first dense captioning results on the TACoS-MultiLevel

dataset.

1. Introduction

The goal of automatic video description is to tell a story

about events happening in a video. While early video de-

scription methods produced captions for short clips that

were manually segmented to contain a single event of inter-

est [2, 24], more recently dense video captioning [13] has

been proposed to both segment distinct events in time and

describe them in a series of coherent sentences. Figure 1

shows an example of this task for a weight-lifting video.

This problem is a generalization of dense image region cap-

tioning [11, 30] and has many practical applications, such

as generating textual summaries for the visually impaired,

or detecting and describing important events in surveillance

footage.

There are several key challenges in dense video caption-

ing: accurately detecting the start and end of each event,
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Figure 1. An example (from ActivityNet Captions [13]) of the

challenges posed by the dense video captioning task. A successful

model must detect the time window of each event, which signif-

icantly affects the content of predicted captions. The sequential

relationship between the three activities in weight lifting suggests

that visual and language contexts play a crucial role in this task.

recognizing the type of activity and objects involved, and

translating this knowledge into a fluent natural language

sentence. The context of the past and future sentences must

also be taken into account to construct coherent stories.

In [13], the authors proposed using two sets of recurrent

neural networks (RNNs). The proposal RNN encodes con-

volutional features from input frames and proposes the start

and end time of temporal activity segments. The separate

two-layer captioning RNN receives the state vector of each

activity proposal and decodes it into a sentence.

One issue with the existing approach [13] is that using

the accumulated state vector of the proposal RNN to repre-

sent the visual content of a proposed segment may be inac-

curate. Each state vector of the proposal RNN is used to pre-

dict a set of variable length temporal proposals, while this

set of proposals use the same RNN state vector as proposal

feature representation. Instead, we want to more precisely

capture the activity feature by considering only the frames

within that temporal segment. Another problem is that the

temporal segmentation (i.e., proposal generation) stage and

the caption generation stage are separately trained. As a

result, errors in sentence prediction cannot be propagated

back to temporal proposal generation. However, consider

Figure 1: if the temporal proposal for the sentence “she

then lifts it... before dropping it...” is shortened by a small

amount, it would miss the drop part of the activity, resulting

in a wrong caption.



In this work, we present a new approach to dense video

captioning, the Joint Event Detection and Description Net-

work (JEDDi-Net). Our model utilizes three-dimensional

convolution to extract video appearance and motion fea-

tures, which are sequentially passed to the temporal event

proposal network and the captioning network. Notably, the

entire network is end-to-end trainable, with feature compu-

tation and temporal segmentation directly influencing cap-

tioning loss. For proposal generation and refinement, we

adapt the proposal network introduced by the Region Con-

volutional 3D Network (R-C3D) model [29] for activity

class detection. The proposal network uses 3D convolu-

tional layers to encode the entire input video buffer and pro-

poses variable-length temporal segments as potential activ-

ities. Spatio-temporal features are extracted for proposals

using 3D Segment-of-Interest (SoI) pooling from the same

convolutional feature maps shared by the proposal stage.

The resulting proposal features are passed along to the cap-

tioning module. We expect to obtain more semantically

accurate captioning using this proposal representation, as

compared to using the accumulated RNN state representa-

tion for a set of proposals [13].

Our JEDDi-Net also uses a hierarchical recurrent cap-

tion generator: the low-level captioner RNN generates a

sentence based on the current proposal’s features and on the

context that is provided by the high-level controller RNN.

The captioning model in [13] also provided context to its

sentence generation LSTM module, in the form of visual

features from the past and future weighted by their corre-

lation with the current proposal’s features. However, the

decoded sentences of preceding proposals may also pro-

vide useful context information for decoding the current

one. Thus, inspired by [34, 12], our proposed hierarchical

RNN captioning module incorporates both visual and lin-

guistic context. The high-level controller RNN accumulates

context from visual features and sentences generated so far,

and provides it to the low-level sentence captioning mod-

ule, which generates the new sentence for the target video

segment.

Contributions: JEDDi-Net can efficiently detect and de-

scribe events in long sequences of frames, including over-

lapping events of both long and short duration. We sum-

marize the key contributions of our paper as follows: 1) an

end-to-end model for the dense video captioning task which

jointly detects events and generates their descriptions (code

is released for public use1); 2) a novel hierarchical language

model that incorporates the visual and language context for

each new caption and considers the relationships between

events in the video; 3) a large-scale evaluation showing

improved results on the ActivityNet Captions dataset [13],

as well as the first dense video captioning results on the

1Code available: https://github.com/VisionLearningGroup/JEDDi-Net

TACoS-MultiLevel dataset [18].

2. Related Work

Activity Detection in Videos: Over the past few years, the

video activity understanding task has quickly evolved from

trimmed video classification [10, 17, 21, 27] to activity de-

tection in untrimmed video, as most real-life videos are not

nicely segmented and contain multiple activities. There are

two types of activity detection tasks: spatio-temporal and

temporal-only. Spatio-temporal activity detection [28, 33]

localizes activities within spatio-temporal tubes and re-

quires heavier annotation work to collect the training data,

while temporal activity detection [3, 15, 16, 20, 22, 32] only

predicts the start and end times of the activities within long

untrimmed videos and classifies the overall activity without

spatially localizing people and objects in the frame. Several

language tasks related to activity detection have recently

emerged in the literature, including the dense video cap-

tioning task, which provides detailed captions for tempo-

rally localized events [13], and the task of language-based

event localization in videos [5, 9].

Our model includes a temporal activity proposal module

which is inspired by the proposal network introduced by the

Region Convolutional 3D Network (R-C3D) model [29] for

activity class detection. Instead of employing sliding win-

dows [20, 6] or RNN feature encodings [3, 15, 16, 22, 32, 1]

to generate temporal proposals, we encode the input video

segment with a fully-convolutional 3D ConvNet and use 3D

SoI pooling to allow feature extraction at arbitrary proposal

granularities, achieving significantly higher detection accu-

racy and providing better proposal features for decoding

captions. Computation is saved by using 3D SoI pooling to

extract proposal features from the shared convolutional fea-

ture encoding of the entire input buffer, compared to sliding

window approaches which re-extract features for each win-

dow from raw input frames.

Video Captioning: Early video captioning models

(e.g., [8]) generated a single caption for a trimmed video

clip by first predicting the subject, verb and object in the

video and then inserting them into a template sentence.

More recent deep models have achieved significantly better

trimmed captioning results by using RNNs/LSTMs for lan-

guage modeling conditioned on CNN features [25, 24]. At-

tention mechanisms have also been incorporated into RNNs

to choose more relevant visual features for decoding cap-

tions [31].

The video paragraph captioning task [34] has also been

proposed to provide multiple detailed sentence descriptions

for long video segments. In contrast to our dense caption-

ing task, video paragraph captioning produces no tempo-

ral localization of sentences. [34] proposed a hierarchical
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Figure 2. The overall architecture of our proposed Joint Event Detection and Description Network (JEDDi-Net) consists of two modules.

The proposal module (Sec. 3.1) extracts features with 3D convolutional layers (C3D) and uses a Segment Proposal Network (SPN) to

generate candidate segment proposals (see Fig. 3 for details). The hierarchical captioning module (Sec. 3.2) contains a controller LSTM to

fuse the visual context Ic and the decoded language context Sp,t−1, and provides its hidden state hc
t to the captioner LSTM, which decodes

the next sentence. Details of LSTMs are in Fig. 4.

RNN to model the language histories when decoding mul-

tiple sentences for the video paragraph captioning task, but

without explicit visual context modelling. A hierarchical

RNN was also applied to image paragraph captioning [12].

However, only the visual context was recorded in the high-

level controller layer, and no language history was fed into

the controller. Hierarchical models have also been applied

to natural language processing [19], with [14] proposing a

hierarchical RNN language model that integrates sentence

history to improve the coherence of documents. [13] in-

troduced the dense-captioning task on an ActivityNet-based

dataset, and modeled context using attention over past and

future visual features. In this paper, we design a hierarchi-

cal captioning module which considers both the visual and

language context of the video segment. Also, in contrast

to [13], our proposal and captioning modules are jointly

trained, with the captioning errors back-propagated to fur-

ther improve the proposal features and boundaries.

3. Approach

Overview: Figure 2 provides an overview of our proposed

JEDDi-Net model. We assume training data in the form of

a video V , which contains a number of ground truth seg-

ments. For each segment, we have its center position c∗ and

length l∗ as well as the words in its caption {wk}k=1...K .

The model consists of two main components: a segment

proposal module and a captioning module.

The Proposal Module encodes all input frames in V us-

ing a 3D convolutional network (C3D). Based on the fea-

tures obtained from the layer conv5b, the Segment Pro-

posal Network (SPN) proposes temporal segments, classi-

fies them as either potential events for captioning or back-

ground, and regresses their temporal boundaries. The C3D

features Cconv5b for the video V are also encoded via max-

pooling as video context Ic, which is utilized in captioning.

The Hierarchical Captioning Module generates a cap-

tion for the tth proposal, t = 1, . . . , T . This module is com-

posed of a caption-level controller network and a word-level

sentence decoder network, both implemented with LSTMs.

The controller network takes the video context vector Ic and

the encoding of the previous sentence Sp,t−1 and provides

a single context vector hc
t as a summary of both visual and

linguistic context. The word-level decoder network takes

as input the current proposal’s features Ip,t and the context

vector hc
t and generates the words wt

k one by one. The en-

tire network is trained end-to-end with three jointly opti-

mized loss functions, including the proposal classification

loss, the regression loss on the proposal’s center and length,

and cross-entropy loss for word prediction. Secs. 3.1 and

3.2 introduce the segment proposal and the hierarchical cap-

tioning modules, and Sec. 3.3 explains the end-to-end opti-

mization strategy.

3.1. Proposal Module

Video Feature Representation: The feature encoding of

the input video should extract semantic appearance and dy-

namic features and preserve temporal sequence informa-

tion. We employ the C3D architecture [23] to encode the

input frames in a fully-convolutional manner. C3D consists

of eight convolutional layers (from conv1a to conv5b).

Convolution and pooling in spatiotemporal space allows us

to retain temporal sequence information within the input

video. We represent the sequence of L RGB video frames

of height H and width W as V ∈ R
3×L×H×W . The



C3DC3DC3D
conv5b 3D max 

pooling

3x3x3 
kernels

3x3x3 
kernels

ctpn

1x1x1 
kernels

1x1x1 
kernels

Lcls

Lreg
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(Sec. 3.1)

C3D convolutions encode V into feature maps Cconv5b ∈
R

512×L

8
×

H

16
×

W

16 (512 is the channel dimension of the layer

conv5b). These feature maps are used to produce the pro-

posal features Ip,t and video-level visual context Ic.

Segment Proposal Network (SPN): In this step, we pre-

dict the activity proposals’ start and end times. The ac-

curacy of the proposals’ boundary will affect the proposal

feature encoding, and will further affect the decoded cap-

tions, especially for short activities. To obtain feature vec-

tors Ctpn ∈ R
512×L

8
×1×1 for predicting proposals at each

of L/8 time points, we add two 3D convolutional filters with

kernel size 3×3×3 on top of Cconv5b, followed by a 3D

max-pooling filter to remove the spatial dimension. Pro-

posed segments are predicted around a set of anchor seg-

ments [29]. Based on the 512-dimensional feature vector

at each temporal location in Ctpn, we predict a relative off-

set {δci, δli} to the center location and the length of each

anchor segment {ci, li}i=1···R, as well as a binary label in-

dicating whether the predicted proposal contains an activity

or not. This is achieved by adding two 1×1×1 convolutional

layers on top of Ctpn. A detailed diagram of the Segment

Proposal Network (SPN) is shown in Figure 3.

Training: To train the binary proposal classifier in the seg-

ment proposal network, we need a training set with posi-

tive and negative examples. Only positive examples con-

tribute to the proposal regression loss. The ground truth

segments’ center location and length are transformed with

respect to the positive anchor segments using Eq (1). We

assign an anchor segment a positive label if it 1) overlaps

with some ground-truth activity with temporal Intersection-

over-Union (tIoU) higher than 0.7, or 2) has the highest tIoU

overlap with some ground-truth activity. If the anchor has

tIoU overlap lower than 0.3 with all ground-truth activities,

then it is given a negative label. All others are held out

from training. We sample balanced batches with a posi-

tive/negative ratio of 1:1.

We train the SPN network by jointly optimizing both

the binary proposal classification and proposal boundary re-

gression. For the ith anchor segment, {ci, li} denotes the

center and the length of the segment and âi denotes the

predicted probability. The corresponding ground truth la-
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bels are a∗i , c∗i , and l∗i . Ground truth segments are trans-

formed with respect to positive anchor segments following

the equations below:

δc∗i = (c∗i − ci)/li

δl∗i = log(l∗i /li).
(1)

SPN predicts the offset δĉi and δl̂i. The cross-entropy loss,

denoted as Lcls, is used for binary proposal classification.

The smooth L1 loss [7], Lreg , is used for proposal boundary

regression and defined as

Lreg(x) = 1(|x| < 1)0.5x2 + 1(|x| ≥ 1)(|x| − 0.5) (2)

where 1(·) is the indicator function. The joint loss function
is given by

Lspn =
1

M

M
∑

i=1

Lcls(âi, a
∗

i )+a
∗

i

(

Lreg(δĉi-δc
∗

i ) + Lreg(δl̂i-δl
∗

i )
)

(3)

where M stands for the number of sampled proposals in the

training batch.

At test time, we perform the inverse transformation of

Eq (1) to find the center and length of predicted proposals.

Then, the proposals are refined via Non-Maximum Suppres-

sion (NMS) with a tIoU threshold of 0.7.

3.2. The Hierarchical Captioning Module

Proposal Feature Encoding: To compute a visual repre-

sentation of each proposed event for the captioning module,

we encode predicted proposals into features Ip,t. In order to

encode variable-length proposals, we adopt 3D SoI Pooling,

which divides the shared feature map Cconv5b equally into

bins, performs max-pooling within each bin, and further

feeds it through the fc6 layer of the C3D network [23]. To

represent visual context, we encode the entire input video

segment V as a vector IC using a max pooling layer and the

shared fc6 layer.

Controller LSTM: To model context between the gen-

erated caption sentences, we adopt a hierarchical LSTM

structure. The high-level Controller LSTM encodes the vi-

sual context and sentence decoding history. The low-level



Captioning LSTM decodes every proposal into a caption

word by word, while being aware of visual and language

context. Figure 4 illustrates this hierarchical structure.

The controller is a single layer LSTM which accepts the

visual context vector Ic and the caption sentence of the pre-

vious proposal, encoded as Sp,t−1. The LSTM hidden state

hc
t of the controller encodes the visual context and the lan-

guage history, and serves as a topic vector, which is fed to

the sentence captioning LSTM. The recurrence equations

for the controller are given as:



f c
t

ict
oct


 = σ





W c

f

W c
i

W c
o





Sp,t−1

Ic
hc
t−1


+



bcf
bci
bco




 (4)

c̃t
c = tanh

(
W c

c

[
Sp,t−1 Ic h

c
t−1

]
+ bcc

)
(5)

cct = ict ⊗ c̃t
c + f c

t ⊗ cct−1 (6)

hc
t = oct ⊗ tanh(cct) (7)

where ⊗ is component-wise multiplication.

The first hidden state hc
0 and the first sentence feature

Sp,0 are initialized to zero. Thus, only visual features

are used for decoding the first proposal. At training time,

ground truth segments are sorted by ascending end time and

their captions’ encodings are fed to the controller LSTM

in sequence. At test time, we sort the predicted proposals

by their end times and decode them sequentially. For the

encoding of the previous caption Sp,t−1, we experimented

with two encoding methods: the mean-pooling of word vec-

tors, or the last hidden state of the captioner LSTM. Prelim-

inary experiments found no obvious differences in perfor-

mance, so we adopt mean-pooling for simplicity.

Sentence Captioning LSTM: We design a two-layer

LSTM network for decoding proposals into captions. The

first layer focuses on learning the word sequence encoding

and the second layer focuses on learning the fusion of vi-

sual and language information and context. Each sentence

is given a maximum length K, and is padded if it is shorter

than K words. As input to the first layer, each word is rep-

resented using word vectors wt
k. The hidden state of the

first layer LSTM, h
(1)
k , is fed to the second layer LSTM,

along with the proposal features Ip,t and the context vector

hc
t from the controller LSTM. The recurrence equations for

the second layer LSTM are given as follows:



fk
ik
ok


 = σ






Wf

Wi

Wo







h
(1)
k

Ip,t
hc
t

h
(2)
k−1


+



bf
bi
bo





 (8)

c̃k = tanh
(
Wc

[
h
(1)
k Ip,t h

c
t h

(2)
k−1

]
+ bc

)
(9)

ck = ik ⊗ c̃k + fk ⊗ ck−1 (10)

hk = ok ⊗ tanh(ck) (11)

The hidden state h
(2)
k goes through a softmax and is used

to predict the word at the kth position in the caption. We
optimize the normalized log likelihood over all T ground
truth proposals and all K unrolled timesteps in the sentence
captioning module:

Lcaption = −
1

KT

∑

t,k

logP (wt
k|Ip,t, h

c
t , w

t
1, ..., w

t
k−1). (12)

3.3. End­to­End Optimization

JEDDi-Net can be trained end-to-end with the proposal
and hierarchical captioning modules optimized jointly. The
overall loss is as follows; we set λ = 1.

Ltotal = Lspn + λLcaption (13)

Our end-to-end training allows us to propagate gradient

information back to the underlying C3D network and op-

timize the convolutional filters for better proposal features

and visual context encoding. In activity detection, multi-

ple positive and negative proposals are generated according

to tIoU thresholds with ground truth segments in a single

video and selectively form balanced training mini-batches.

In dense captioning, however, a video contains only a few

ground-truth captions. Further, the same captions always

appear together in the same mini-batch with one video as

input during end-to-end training. We find the lack of diver-

sity to severely disrupt proper optimization.

We propose a more effective training strategy. We first

extract intermediate ground truth segment features from the

pretrained SPN and C3D classification networks. We then

shuffle these and form a relatively large training batch with

diverse captions to pre-train the captioning module. After

pretraining, the entire network is trained end-to-end fol-

lowing the conventional strategy with a reduced learning

rate. In the experimental section, we show substantial per-

formance improvements after end-to-end training compared

to the separately trained models. In the next section, we

present experimental results illustrating the benefits of end-

to-end training on both proposal prediction and caption gen-

eration.

4. Experiments

We evaluate JEDDi-Net on the large-scale ActivityNet

Captions dataset proposed by [13]. For proposal evaluation,

we use the conventional Area Under the AR vs AN curve

(AUC) with tIoU threshold 0.8. When evaluating captions,

we follow [13] by computing the average precision (BLEU,

METEOR, CIDEr and ROUGE L) across tIoU thresholds

of 0.3, 0.5, 0.7, 0.9 for the top 1000 proposals. In addition,

we report results on the TACoS-MultiLevel dataset [18].



Table 1. Proposal evaluation results on ActivityNet Captions

dataset (in percentage). AUC at IoU threshold 0.8 and average

AUC at tIoU thresholds α ∈ (0.5, 0.95) with step 0.05 are re-

ported.

α = 0.8 α ∈ (0.5, 0.95)
DAP [13] 30 -

multi-scale DAP [13] 38 -

pretrain SPN 57.75 57.12

JEDDi-Net(joint training) 59.13 58.70

JEDDi-Net(joint training w/ context) 58.21 58.24

4.1. Experiments on the ActivityNet Captions

Dataset and Setup: The ActivityNet Captions dataset [13]

with around 20k videos are split into training, validation and

testing with a 50%/25%/25% ratio. Each video contains at

least two ground truth segments and each segment is paired

with one ground truth caption. We keep all the words that

appear at least 5 times. The height H and width W of all

input frames are set to 112 each following [23]. We set the

number of frames L to 768, breaking the arbitrary length

input video into 768 frame chunks and zero-padding if nec-

essary. The maximum caption length is set to 30, which

covers over 97% of captions in the training set. We sample

frames at 3 fps and set the number of anchor segment scales

to be 36 to generate candidate proposals2. In the hierarchi-

cal captioning module, we set the hidden state dimension to

20 in the controller LSTM and 512 in the captioner LSTMs.

We train the SPN using the temporal annotation of

ground truth segments in the ActivityNet Captions dataset

with Sports-1M pretrained C3D weight initialized [23]. We

also extract fc6 features for ground truth proposals from

pretrained SPN, shuffle the proposal features and paired

ground truth captions, and form batches of size 32 to train

the captioner LSTM from scratch. The pretrained SPN and

captioner LSTM will serve as initialization weights for our

end-to-end model. We refer our full JEDDi-Net which is

jointly trained for SPN and hierarchical captioning modules

as ‘JEDDi-Net(joint training with context)’. After remov-

ing the controller LSTM of the hierarchical captioning mod-

ule in ‘JEDDi-Net(joint training with context)’, we refer

this ablation model as ‘JEDDi-Net(joint training)’. To show

the effectiveness of end-to-end training in our model, we

extract proposal features from the separately trained SPN

and decode captions using the separately trained captioner

LSTM, and refer to this model as ‘JEDDi-Net(separate

training)’.

Proposal Evaluation: The proposal evaluation result is

shown in Table 1. The dense video captioning model in [13]

uses DAP [3] as its proposal network, extends DAP to a

2Specifically, we chose the following anchor scales based on cross-

validation - [1,2,3,4,5,6,7,8,10,12,14,16,20,24,28,32,40,48,56,64,66,68,

70,72,74,76,78,80,82,84,86,88,90,92,94,96].

multi-scale version and shows improved proposal results

in AUC at tIoU 0.8. Our pretrained SPN model achieves

57.75% at tIoU 0.8 in AUC, 19.75% higher than [13], in-

dicating our superior ability to segment events of inter-

est. Following the traditional evaluation of the temporal

localization task in ActivityNet, we also report the average

AUC result across ten different tIoU thresholds uniformly

distributed between 0.5 and 0.95 with 1000 proposals per

video. The average AUC for our pretrained SPN is 57.12%,

which is on par with tIoU at 0.8, indicating robust perfor-

mance of SPN across different tIoUs.

Dense Captioning Evaluation: The average dense video

captioning results across four tIoUs using the evaluation

code released by [13] are shown in Table 2. We list the

two baseline results from [13], the model without visual

context and the one with visual context. Our first ‘JEDDi-

Net(separate training)’ model without end-to-end training

already achieves reasonable results with a METEOR score

2.55% higher than the best context model in [13]. This

indicates that our decoded captions are more semantically

meaningful and closer to human descriptions. These results

further motivate our proposal feature encoding method,

which employs 3D SoI pooling directly on the conv features

of the input video segment, rather than using the LSTM hid-

den state for a set of proposals. Our ‘JEDDi-Net(separate

training)’ and ‘JEDDi-Net(joint training)’ models with-

out context do better than [13]’s ‘no context’ model on

all evaluation metrics. After end-to-end training, both

‘JEDDi-Net(joint training)’ and ‘JEDDi-Net(joint training

with context)’ improve on all evaluation metrics compared

to ‘JEDDi-Net(separate training)’. This shows the benefits

of joint parameter training for dense video captioning. Our

‘JEDDi-Net(joint training with context)’ model that incor-

porates visual and language context further improves all the

language evaluation metrics compared to the no context ver-

sion.

Our full model outperforms the context model in [13] on

all evaluation metrics except for Bleu 4. In particular, we

achieve a 78% relative improvement on METEOR, the only

metric used by the test server. The reason for lower BLEU 4

might be that we did not leverage the power of beam search

due to limited computational resources. We decoded the

captions with greedy search (in Table 2), selecting the most

probable word at each timestep. Experiments in several pa-

pers [26, 4] show that beam search can improve some eval-

uation metrics, especially Bleu 3 and Bleu 4.

Applying the same JEDDi-Net(joint training with con-

text) on the test server yields an average METEOR score of

8.81%, which is on the same level as the average METEOR

score 8.58% on the validation set. This demonstrates that

our model generalizes well to unseen data.

Table 3 shows all the evaluation metrics for all the four

tIoUs in details for our ‘JEDDi-Net(joint training with con-



Table 2. Dense video captioning results on ActivityNet Captions dataset (in percentage). The average Bleu 1-4 (B1-B4), METEOR (M),

CIDEr (C) and ROUGE L (R) across tIoU thresholds of 0.3, 0.5, 0.7, 0.9 are reported.

Model B1 B2 B3 B4 M C R

R. Krishna et al. [13] (no context) 12.23 3.48 2.1 0.88 3.76 12.34 -

R. Krishna et al. [13] (with context) 17.95 7.69 3.86 2.20 4.82 17.29 -

JEDDi-Net(separate training) 16.72 6.65 2.65 1.07 7.37 14.65 16.47

JEDDi-Net(joint training) 19.27 8.69 3.78 1.54 8.30 19.81 18.86

JEDDi-Net(joint training w/ context) 19.97 9.10 4.06 1.63 8.58 19.88 19.63

JEDDi-Net(joint training w/ context)

on test server - - - - 8.81 - -

Table 3. Dense video captioning results at different tIoU thresholds α on ActivityNet Captions dataset (in percentage). The Bleu 1-4

(B1-B4), METEOR (M), CIDEr (C), and ROUGE L (R) at different tIoU thresholds α are reported for our JEDDi-Net(joint training with

context) with greedy search decoding.

α B1 B2 B3 B4 M C R

0.3 19.72 8.84 4.04 1.65 8.44 13.40 19.80

0.5 20.31 9.26 4.22 1.71 8.75 16.53 20.41

0.7 20.86 9.70 4.37 1.76 8.97 21.52 20.74

0.9 19.00 8.60 3.61 1.39 8.17 28.09 17.57

avg α ∈ (0.3, 0.5, 0.7, 0.9) 19.97 9.10 4.06 1.63 8.58 19.88 19.63

text)’. As tIoU α increases from 0.3 to 0.7, Bleu 1-4, ME-

TEOR and ROUGE L increase steadily, with the highest

scores at α = 0.7. The reason might be that our SPN net-

work is trained with tIoU greater than 0.7 as positive exam-

ples, and tested with post processed NMS at 0.7. However,

Bleu 1-4, METEOR and ROUGE L decrease significantly

at tIoU 0.9, possibly because much fewer proposals have

been left for evaluation using the tIoU 0.9 criterion. The

CIDEr metric is consistently improved across tIoU α val-

ues from 0.3 to 0.9, which indicates the sensitivity of the

CIDEr score to the number of evaluation proposals. CIDEr

measures the diversity of the captions. When a small subset

of proposals is kept with higher tIoU, the captions are more

diverse and the CIDEr score is higher, and vice versa.

We show two videos with predicted dense captions from

JEDDi-Net as qualitative examples from the ActivityNet

Captions dataset in Figure 5(a). Our model generates con-

tinuous and fluent descriptions of the activities of jumping

over the mat and making a cocktail, taking context into ac-

count. We note that the ground truth caption for segment A

in the first video is “A man is seen...”, while our prediction

is “A person is seen...”. Though these two 4-grams have

the same meaning in this video, such predictions will not be

counted as positive in the Bleu 4 score, indicating a poten-

tial reason for the lower value.

4.2. Experiments on the TACoS­MultiLevel Dataset

Dataset and Setup: The TACoS-MultiLevel dataset [18]

contains cooking videos with the start and end time for cap-

Table 4. Proposal evaluation results on TACoS-MultiLevel dataset,

showing AUC at tIoU threshold 0.8 and average AUC at tIoU α ∈
(0.5, 0.95) with step 0.05.

α = 0.8 α ∈ (0.5, 0.95)
pretrain SPN 36.88 41.90

JEDDi-Net(joint training) 36.85 43.30

JEDDi-Net(joint training w/ context) 36.31 43.23

tions and activity labels, which can be used for dense video

captioning. Compared to ActivityNet Captions, TACoS has

more ground truth annotations per video with an average of

284 sentences per video. We use the same 143/42 video

split for training and testing as in [34]. All words are kept

in the vocabulary and the maximum caption length is set to

15. Frames are sampled at 5 fps. Other settings are identi-

cal with the ActivityNet Captions experiments. We evaluate

three ablated models on proposal detection and caption gen-

eration.

Results: Table 4 shows results of proposal evaluation. We

report the average AUC result across ten tIoU thresholds

uniformly distributed between 0.5 and 0.95 for top 1000

proposals per video. We also measure the improvement

of proposal detection after end-to-end training. The aver-

age AUC for both ‘JEDDi-Net(joint training)’ and ‘JEDDi-

Net(joint training with context)’ improve compared with the

pretrained SPN, while AUC at tIoU 0.8 stays almost the

same.

Table 5 shows results for caption generation averaged

across four tIoUs. No dense captioning results have been



Table 5. Dense video captioning results on TACoS-MultiLevel dataset (in percentage). The average Bleu 1-4 (B1-B4), METEOR (M),

CIDEr (C) and ROUGE L (R) across tIoU thresholds of 0.3, 0.5, 0.7, 0.9 are reported.

models B1 B2 B3 B4 M C R

JEDDi-Net(separate training) 45.2 32.3 19.7 13.1 20.7 65.4 46.2

JEDDi-Net(joint training) 48.7 36.4 24.6 17.4 23.3 99.7 50.0

JEDDi-Net(joint training w/ context) 49.2 37.1 25.2 18.1 23.9 104.0 50.9

previously reported on this dataset, so ours is the first set of

such results. The previously reported trimmed video cap-

tioning results can be considered as the upper bound for our

task on the same annotations, as it is noted in [13]. TACoS-

MultiLevel dataset [18] reports a Bleu 4 value of 27.5% for

trimmed video captioning, which can be seen as the upper

bound of our reported Bleu 4 value with the consideration

of tIoU overlaps. Compared to ‘JEDDi-Net(separate train-

ing)’, all evaluation metrics for both ‘JEDDi-Net(joint train-

ing)’ and ‘JEDDi-Net(joint training with context)’ improve

after end-to-end training, which indicates the benefits of our

approach. Also ‘JEDDi-Net(joint training with context)’

further improves all evaluation metrics through modelling

of visual and language context in the hierarchical caption-

ing module, compared to ‘JEDDi-Net(joint training)’ with-

out explicitly modeling context.

Figure 5(b) provides two examples of video predic-

tions from TACoS-MultiLevel dataset. Though JEDDi-

Net missed some objects in the generated captions like “a

measuring cup”, JEDDi-Net could still provide fine-grained

descriptions of certain activities involving small objects

such as the orange and the egg. The network likely bene-

fited from learning object representations from the captions

in end-to-end training.

5. Conclusion

In this paper, we proposed JEDDi-Net, an end-to-end

deep neural network designed to perform the dense video

captioning task, and introduced an optimization strategy for

training it end-to-end. The visual and language context is

incorporated by the controller in the hierarchical caption-

ing module, to provide context for decoding each proposal

rather than training and decoding each proposal indepen-

dently. Our end-to-end framework can be further extended

to solve other vision and language tasks, such as natural

language localization in videos.
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JEDDi-Net (ours)                                                 Ground Truth
A: A man is standing in a kitchen talking to         A: A man is standing behind a bar with several
     a camera.                  bottles of drinks.
B: The man pours a glass of ice and pours         B: He fills a cup with ice and pours all the  
     it into a glass.                  ingredients into the glass.
C: The man then puts the drink into the glass     C: He takes out another glass and pours the drink 
     and pours it into the glass.                                   into the new glass and places a straw into it.

JEDDi-Net (ours)                                                 Ground Truth
A: A person is seen walking down a gym            A: A man is seen sitting before a large mat with  
     with a large group of people on the side.            another person laying in the background.
B: The man then jumps into the air and               B+C: The man then runs down the mats on stilts
     begins to jump around the mat.                                and jumps over a large mat.
C: The man then jumps off the mat and walks away.

A B C

A B C

(a) ActivityNet Captions dataset

A B C D

JEDDi-Net (ours)                                              Ground Truth
A: The person took a knife from the drawer.    A: The person took a knife from the drawer.
B: The person cut the orange in half.               B: The person placed one half of the orange on the                     

             top of the juicer.
C: The person juiced the orange half.              C: The person juiced an orange half using the juicer.
D: The person put the peel in the trash.           D: The person threw the orange rind into the trash.

JEDDi-Net (ours)                                                     Ground Truth
A: The person entered the kitchen.                         A: The person entered the kitchen.
B: The person took out a drawer.                            B: The person took out a measuring cup.
C: The person took an egg from the refrigerator.    C: The person took an egg from the refrigerator.
D: The person put the egg in the bowl.                   D: The person put the egg-white in one glass.
E: The person placed the egg back on the counter.E: The person threw the shell in the garbage.

A B C D E

(b) TACoS-MultiLevel dataset

Figure 5. Qualitative visualization of the predicted dense captions

by JEDDi-Net (best viewed in color). Figure (a) and (b) show

results for two videos each in ActivityNet captions dataset and

TACoS-MultiLevel dataset.
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